2007 - a special anniversary year for Dräger

Drägerwerk AG100 years ago in October 1907, company founder, Johann Heinrich Dräger, was awarded a patent for the Pulmotor, the first mobile short-term respirator. This marked the birth of ventilation technology development at Dräger. Simple, reliable, and extremely effective, the apparatus - transported in a wooden casket - quickly became a standard piece of equipment used by rescue services throughout Germany.

It all began early in the 20th century, when, on a trip to England, Johann Heinrich Dräger witnessed a young man being pulled out the Thames and resuscitated using the traditional Schaeffer method. Still in London, Dräger then produced some initial sketches. Upon returning to Lübeck, he began developing a technical solution for a resuscitation machine. After a few more modifications, the result was "Dräger's Pulmotor, the first automatic oxygen resuscitation machine for artificial respiration", manufactured in the factory and construction institute for oxygen apparatus known at the time as Drägerwerk in Lübeck, Germany. In his memoirs, Johann Heinrich Dräger spoke of the Pulmotor as having enabled well over 1,000 officially attested resuscitations by March 1, 1917.

Successful attempts at resuscitating miners poisoned by carbon monoxide, for example, paid testament to the success of the oxygen machine just a short time after its market launch in 1908 - in defiance of the skeptics of positive pressure respiration. Dräger consequently started serial production which, even at that time, proved extremely successful in the United States. The first Dräger company on US soil was founded in the US in 1907, too: at 11 Broadway in New York City; shortly afterwards, the company was moved to Pittsburgh, PA, and renamed Draeger Oxygen Apparatus Company. Internationality and innovativeness have a long tradition at Dräger.

In the US, the Pulmotor respirator was bought mainly to equip rescue teams of mining companies (mine rescuers) and fire departments, hence Dräger's legendary reputation for breathing apparatus in the US: mine rescuers equipped with Dräger apparatus were known as Draegermen.

The Oxylog product family, which is still going strong today, superseded the successful Pulmotor in 1978. After the first applications of the Iron Lung in the fifties, long-term positive pressure ventilation was introduced. Today, this is fulfilled by the intensive care ventilators of the Evita family. All of these devices are based on the technical specifications of the Pulmotor. In fact, advancements in this technical innovation from the beginning of the 20th century are now not only used for emergency and long-term ventilation, but also in anesthesia and for home care.

For further information, please visit:
http://www.draeger.com

Most Popular Now

Integrating Care Records is Good. Using …

Opinion Article by Dr Paul Deffley, Chief Medical Officer, Alcidion. A single patient record already exists in the NHS. Or at least, that’s a perception shared by many. A survey of...

Should AI Chatbots Replace Your Therapis…

The new study exposes the dangerous flaws in using artificial intelligence (AI) chatbots for mental health support. For the first time, the researchers evaluated these AI systems against clinical standards...

AI could Help Pathologists Match Cancer …

A new study by researchers at the Icahn School of Medicine at Mount Sinai, Memorial Sloan Kettering Cancer Center, and collaborators, suggests that artificial intelligence (AI) could significantly improve how...

AI Detects Early Signs of Osteoporosis f…

Investigators have developed an artificial intelligence-assisted diagnostic system that can estimate bone mineral density in both the lumbar spine and the femur of the upper leg, based on X-ray images...

AI Model Converts Hospital Records into …

UCLA researchers have developed an AI system that turns fragmented electronic health records (EHR) normally in tables into readable narratives, allowing artificial intelligence to make sense of complex patient histories...

AI Sharpens Pathologists' Interpret…

Pathologists' examinations of tissue samples from skin cancer tumours improved when they were assisted by an AI tool. The assessments became more consistent and patients' prognoses were described more accurately...

AI Tool Detects Surgical Site Infections…

A team of Mayo Clinic researchers has developed an artificial intelligence (AI) system that can detect surgical site infections (SSIs) with high accuracy from patient-submitted postoperative wound photos, potentially transforming...

Forging a Novel Therapeutic Path for Pat…

Rett syndrome is a devastating rare genetic childhood disorder primarily affecting girls. Merely 1 out of 10,000 girls are born with it and much fewer boys. It is caused by...

Mayo Clinic's AI Tool Identifies 9 …

Mayo Clinic researchers have developed a new artificial intelligence (AI) tool that helps clinicians identify brain activity patterns linked to nine types of dementia, including Alzheimer's disease, using a single...

AI Detects Fatty Liver Disease with Ches…

Fatty liver disease, caused by the accumulation of fat in the liver, is estimated to affect one in four people worldwide. If left untreated, it can lead to serious complications...

AI Matches Doctors in Mapping Lung Tumor…

In radiation therapy, precision can save lives. Oncologists must carefully map the size and location of a tumor before delivering high-dose radiation to destroy cancer cells while sparing healthy tissue...

Meet Your Digital Twin

Before an important meeting or when a big decision needs to be made, we often mentally run through various scenarios before settling on the best course of action. But when...