2007 - a special anniversary year for Dräger

Drägerwerk AG100 years ago in October 1907, company founder, Johann Heinrich Dräger, was awarded a patent for the Pulmotor, the first mobile short-term respirator. This marked the birth of ventilation technology development at Dräger. Simple, reliable, and extremely effective, the apparatus - transported in a wooden casket - quickly became a standard piece of equipment used by rescue services throughout Germany.

It all began early in the 20th century, when, on a trip to England, Johann Heinrich Dräger witnessed a young man being pulled out the Thames and resuscitated using the traditional Schaeffer method. Still in London, Dräger then produced some initial sketches. Upon returning to Lübeck, he began developing a technical solution for a resuscitation machine. After a few more modifications, the result was "Dräger's Pulmotor, the first automatic oxygen resuscitation machine for artificial respiration", manufactured in the factory and construction institute for oxygen apparatus known at the time as Drägerwerk in Lübeck, Germany. In his memoirs, Johann Heinrich Dräger spoke of the Pulmotor as having enabled well over 1,000 officially attested resuscitations by March 1, 1917.

Successful attempts at resuscitating miners poisoned by carbon monoxide, for example, paid testament to the success of the oxygen machine just a short time after its market launch in 1908 - in defiance of the skeptics of positive pressure respiration. Dräger consequently started serial production which, even at that time, proved extremely successful in the United States. The first Dräger company on US soil was founded in the US in 1907, too: at 11 Broadway in New York City; shortly afterwards, the company was moved to Pittsburgh, PA, and renamed Draeger Oxygen Apparatus Company. Internationality and innovativeness have a long tradition at Dräger.

In the US, the Pulmotor respirator was bought mainly to equip rescue teams of mining companies (mine rescuers) and fire departments, hence Dräger's legendary reputation for breathing apparatus in the US: mine rescuers equipped with Dräger apparatus were known as Draegermen.

The Oxylog product family, which is still going strong today, superseded the successful Pulmotor in 1978. After the first applications of the Iron Lung in the fifties, long-term positive pressure ventilation was introduced. Today, this is fulfilled by the intensive care ventilators of the Evita family. All of these devices are based on the technical specifications of the Pulmotor. In fact, advancements in this technical innovation from the beginning of the 20th century are now not only used for emergency and long-term ventilation, but also in anesthesia and for home care.

For further information, please visit:
http://www.draeger.com

Most Popular Now

AI Catches One-Third of Interval Breast …

An AI algorithm for breast cancer screening has potential to enhance the performance of digital breast tomosynthesis (DBT), reducing interval cancers by up to one-third, according to a study published...

Great plan: Now We need to Get Real abou…

The government's big plan for the 10 Year Health Plan for the NHS laid out a big role for delivery. However, the Highland Marketing advisory board felt the missing implementation...

Free AI Tools can Help Doctors Read Medi…

A new study from the University of Colorado Anschutz Medical Campus shows that free, open-source artificial intelligence (AI) tools can help doctors report medical scans just as well as more...

Researchers Create 'Virtual Scienti…

There may be a new artificial intelligence-driven tool to turbocharge scientific discovery: virtual labs. Modeled after a well-established Stanford School of Medicine research group, the virtual lab is complete with an...

From WebMD to AI Chatbots: How Innovatio…

A new research article published in the Journal of Participatory Medicine unveils how successive waves of digital technology innovation have empowered patients, fostering a more collaborative and responsive health care...

Autonomous AI Agents in Healthcare

The use of large language models (LLMs) and other forms of generative AI (GenAI) in healthcare has surged in recent years, and many of these technologies are already applied in...

Can Amazon Alexa or Google Home Help Det…

Computer scientists at the University of Rochester have developed an AI-powered, speech-based screening tool that can help people assess whether they are showing signs of Parkinson’s disease, the fastest growing...

New AI Tool Accelerates mRNA-Based Treat…

A new artificial intelligence (AI) model can improve the process of drug and vaccine discovery by predicting how efficiently specific mRNA sequences will produce proteins, both generally and in various...

AI also Assesses Dutch Mammograms Better…

AI is detecting tumors more often and earlier in the Dutch breast cancer screening program. Those tumors can then be treated at an earlier stage. This has been demonstrated by...

RSNA AI Challenge Models can Independent…

Algorithms submitted for an AI Challenge hosted by the Radiological Society of North America (RSNA) have shown excellent performance for detecting breast cancers on mammography images, increasing screening sensitivity while...

AI could Help Emergency Rooms Predict Ad…

Artificial intelligence (AI) can help emergency department (ED) teams better anticipate which patients will need hospital admission, hours earlier than is currently possible, according to a multi-hospital study by the...

Head-to-Head Against AI, Pharmacy Studen…

Students pursuing a Doctor of Pharmacy degree routinely take - and pass - rigorous exams to prove competency in several areas. Can ChatGPT accurately answer the same questions? A new...