UK Scientists Opening Up Access to Science through DIY Equipment

Scientists at the University of Sussex have developed a piece of hardware to demonstrate how our brains function, as part of a growing range of equipment which uses DIY and 3D printable models to open up access to science education. Professor of Neuroscience, Tom Baden, has been working with colleagues to build Spikeling; a piece of electronic kit which behaves similarly to neurons in the brain.

Understanding how neurons encode and compute information is a central part of neuroscience but until now, opportunities for hands-on experience has been scarce.

But for just £25, Professor Baden may have found a way to make the process of learning neuroscience much more interactive.

Spikeling simulates how nerve cells in the brain compute information, with receptors that react to external stimuli like light.

Students can then follow the activity of the brain cells and their underlying mechanisms live on a computer screen.

Multiple Spikelings can be linked together to form a network, showing how brain neurons interconnect; allowing scientists to demonstrate the behaviour behind every day actions like walking.

Professor Baden said: "Spikeling is a useful piece of kit for anyone teaching neuroscience because it allows us to demonstrate how neurons work in a more interactive way."

Professor Baden and his team hope that Spikeling will become a useful teaching tool in neuroscience and the kit is already being put into practice, with the teaching of third year Neuroscience students at the University of Sussex, and at a summer school in Nigeria in 2017 where scientists were also taught how to build the hardware from scratch.

Spikeling is the latest in a line of equipment developed by Professor Baden, who also recently developed designs for a 3D printable microscope called FlyPi, which can be set up with a basic unit for 100 Euros (compared to commercial microscopes costing thousands of dollars) and a pipette.

All have been made available openly with the design for Spikeling published on open access journal PLOS Biology.

Professor Baden explained: "With all parts being cheap, and design files being free and open, we hope that like any open Hardware design, Spikeling can be a starting point for others to change or extend it to their requirements, and reshare their improved design with the community."

This is sharing of design files is a growing trend with hundreds of designs from the global community constantly collected on the PLOS Open Hardware toolkit, co-moderated by Professor Baden.

The overall aim for Baden's lab, is to level the playing field in global science where equipment is otherwise expensive.

Andre Maia Chagas, a Research Technician in the lab, recently wrote an article advocating the need for open scientific hardware.

Also published in PLOS Biology, the article was a response to a piece by American neuroscientist Eve Marder which questioned whether researchers in less wealth institutions may be left behind as the equipment needed to perform scientific research becomes ever more expensive.

Professor Baden said: "By making access to scientific and teaching equipment free and open, researchers and educators can take the future into their own hands. In time, we hope that this type of work will contribute to level the playing field across the globe, such that ideas, not funding can be the primary driver for success and new insights."

Tom Baden, Ben James, Maxime JY Zimmermann, Phillip Bartel, Dorieke Grijseels, Thomas Euler, Leon Lagnado, Miguel Maravall.
Spikeling: A low-cost hardware implementation of a spiking neuron for neuroscience teaching and outreach.
PLOS Biology 2018. doi: 10.1371/journal.pbio.2006760.

Most Popular Now

Stepping Hill Hospital Announced as SPAR…

Stepping Hill Hospital, part of Stockport NHS Foundation Trust, has replaced its bedside units with state-of-the art devices running a full range of information, engagement, communications and productivity apps, to...

DMEA 2025: Digital Health Worldwide in B…

8 - 10 April 2025, Berlin, Germany. From the AI Act, to the potential of the European Health Data Space, to the power of patient data in Scandinavia - DMEA 2025...

New System for the Early Detection of Au…

A team from the Human-Tech Institute-Universitat Politècnica de València has developed a new system for the early detection of Autism Spectrum Disorder (ASD) using virtual reality and artificial intelligence. The...

Is AI in Medicine Playing Fair?

As artificial intelligence (AI) rapidly integrates into health care, a new study by researchers at the Icahn School of Medicine at Mount Sinai reveals that all generative AI models may...

Generative AI's Diagnostic Capabili…

The use of generative AI for diagnostics has attracted attention in the medical field and many research papers have been published on this topic. However, because the evaluation criteria were...

Diagnoses and Treatment Recommendations …

A new study led by Prof. Dan Zeltzer, a digital health expert from the Berglas School of Economics at Tel Aviv University, compared the quality of diagnostic and treatment recommendations...

AI Tool can Track Effectiveness of Multi…

A new artificial intelligence (AI) tool that can help interpret and assess how well treatments are working for patients with multiple sclerosis (MS) has been developed by UCL researchers. AI uses...

Surrey and Sussex Healthcare NHS Trust g…

Surrey and Sussex Healthcare NHS Trust has marked an important milestone in connecting busy radiologists across large parts of South East England, following the successful go live of Sectra's enterprise...

DMEA 2025 Ends with Record Attendance an…

8 - 10 April 2025, Berlin, Germany. DMEA 2025 came to a successful close with record attendance and an impressive program. 20,500 participants attended Europe's leading digital health event over the...

Dr Jason Broch Joins the Highland Market…

The Highland Marketing advisory board has welcomed a new member - Dr Jason Broch, a GP and director with a strong track record in the NHS and IT-enabled transformation. Dr Broch...

AI-Driven Smart Devices to Transform Hea…

AI-powered, internet-connected medical devices have the potential to revolutionise healthcare by enabling early disease detection, real-time patient monitoring, and personalised treatments, a new study suggests. They are already saving lives...

Multi-Resistance in Bacteria Predicted b…

An AI model trained on large amounts of genetic data can predict whether bacteria will become antibiotic-resistant. The new study shows that antibiotic resistance is more easily transmitted between genetically...