Siemens to Emphasize Emerging Fields of Oncology and Neurology Biomarkers

SIEMENSSiemens Medical Solutions today opened the doors to a new state-of-the-art research facility dedicated exclusively to the development of molecular imaging biomarkers, which will become in vivo diagnostic tools for identifying debilitating diseases such as cancer, and neurological diseases at their earliest stages.

The opening of the Siemens Medical Solutions Molecular Imaging (MI) Biomarker Research facility is the latest step for the company in becoming the world's first full-service diagnostics company, integrating in vivo and in vitro imaging diagnostics capabilities. Siemens recently launched Siemens Medical Solutions Diagnostics as the in vitro complement to the portfolio on the heels of acquisitions of Bayer Diagnostics and Los Angeles-based Diagnostic Products Corporation.

"Molecular medicine is heralding a new era in diagnostic capabilities that could change the lives of millions of Americans - and Siemens is helping lead the field out of the research lab and into practical use," said Michael Reitermann, president, Molecular Imaging division, Siemens Medical Solutions. "Advancing this field brings with it the promise of personalized therapeutics, which would not only improve the efficiency of health care, but most importantly, would also improve the quality of health care for patients."

Siemens Medical Solutions MI Biomarker Research facility will be dedicated solely to the discovery and development of new imaging biomarkers to spur the growth of in vivo molecular diagnostics. Imaging biomarkers are molecules that are specifically designed to seek out disease indicators that may appear in individual cells or tissue in the organism and that may provide early warning signs of disease. Once these imaging biomarkers bind to the diseased cells or tissues, they cause them to "light up" when scanned using PET-CT (Positron Emission Tomography-Computed Tomography) or SPECT-CT (Single-Photon Emission Computed Tomography).

Imaging biomarkers not only enable early diagnosis, but also allow the measurement of how well certain therapies, such as prescription drugs, chemotherapy and radiation therapy, may be working by measuring the impact of treatments on the disease indicators. This may aid the development of new therapies, and enable clinicians to non-invasively assess therapeutic success and quickly adjust therapeutic approaches to arrive at optimum outcomes.

The new Siemens' facility will be led by Hartmuth Kolb, Ph.D, vice president, Siemens Medical Solutions MI Biomarker Research. The facility will house scientists, dedicated to the discovery of new imaging agents and their clinical development, with the goal of bringing several new agents to the market over the next 5 - 10 years. Research and development efforts conducted at the facility will focus largely on oncology and neurology, and also include other areas such as inflammation and microfluidics/nanotechnology research.

The facility features the latest technology in molecular medicine applied across its research portfolio, including the facility's discovery chemistry lab, in vitro biology lab, preclinical imaging lab, clean room for microfluidics research, instrument room for microfluidics development and a PET radiochemistry lab.

In addition to continued work on the new research imaging agent to aid in Alzheimer's detection, the Siemens Medical Solutions MI Biomarker Research team has a number of oncology-related compounds in the discovery and translational research pipeline, which are moving towards clinical development. In collaboration with academia and industry, molecular imaging tracers for cell proliferation (imaging of aggressive tumors), hypoxia (to aid the planning of radiation therapy), and angiogenesis (to aid chemotherapy) are currently being developed. Future research will branch out into neurology and cardiovascular disease areas.

"Imaging biomarkers have increasingly become an essential tool not only for the non-invasive diagnosis of disease such as cancer or cardiovascular disease, but also for the development of new therapeutic drugs by the pharma and biotech industry, said Kolb. "Our vision is to take the entire value chain that Siemens offers - imaging, in vitro diagnostics and IT - and use those offerings in combination with our biomarker research to find potential answers to some of the most complex and burdensome health conditions we face."

Recent imaging biomarker studies on certain diseases such as Alzheimer's or tumors have shown that these biomarkers are highly precise in identifying disease indicators. The imaging biomarkers work within the affected cells in a living organism without the need for taking tissue samples, in contrast to in vitro diagnostic tests, which typically require tissue, urine or blood samples to be taken. A December 2006 study published in the New England Journal of Medicine reported that researchers at UCLA using a specific imaging biomarker in conjunction with PET scanning were 98 percent accurate in identifying Alzheimer's disease among a group of volunteers who presented with only mild cognitive impairment. Siemens and UCLA are now in Phase I clinical trials with the Alzheimer's imaging biomarker.

Siemens Medical Solutions of Siemens AG (NYSE:SI) is one of the world's largest suppliers to the healthcare industry. The company is known for bringing together innovative medical technologies, healthcare information systems, management consulting, and support services, to help customers achieve tangible, sustainable, clinical and financial outcomes. Recent acquisitions in the area of in-vitro diagnostics - such as Diagnostic Products Corporation and Bayer Diagnostics - mark a significant milestone for Siemens as it becomes the first full service diagnostics company. Employing more than 41,000 people worldwide and operating in over 130 countries, Siemens Medical Solutions reported sales of 8.23 billion EUR, orders of 9.33 billion EUR and group profit of 1.06 billion EUR for fiscal 2006 (Sept. 30). Further information can be found by visiting www.usa.siemens.com/medical-pressroom

Most Popular Now

Integrating Care Records is Good. Using …

Opinion Article by Dr Paul Deffley, Chief Medical Officer, Alcidion. A single patient record already exists in the NHS. Or at least, that’s a perception shared by many. A survey of...

Should AI Chatbots Replace Your Therapis…

The new study exposes the dangerous flaws in using artificial intelligence (AI) chatbots for mental health support. For the first time, the researchers evaluated these AI systems against clinical standards...

AI could Help Pathologists Match Cancer …

A new study by researchers at the Icahn School of Medicine at Mount Sinai, Memorial Sloan Kettering Cancer Center, and collaborators, suggests that artificial intelligence (AI) could significantly improve how...

AI Detects Early Signs of Osteoporosis f…

Investigators have developed an artificial intelligence-assisted diagnostic system that can estimate bone mineral density in both the lumbar spine and the femur of the upper leg, based on X-ray images...

AI Model Converts Hospital Records into …

UCLA researchers have developed an AI system that turns fragmented electronic health records (EHR) normally in tables into readable narratives, allowing artificial intelligence to make sense of complex patient histories...

AI Sharpens Pathologists' Interpret…

Pathologists' examinations of tissue samples from skin cancer tumours improved when they were assisted by an AI tool. The assessments became more consistent and patients' prognoses were described more accurately...

AI Tool Detects Surgical Site Infections…

A team of Mayo Clinic researchers has developed an artificial intelligence (AI) system that can detect surgical site infections (SSIs) with high accuracy from patient-submitted postoperative wound photos, potentially transforming...

Forging a Novel Therapeutic Path for Pat…

Rett syndrome is a devastating rare genetic childhood disorder primarily affecting girls. Merely 1 out of 10,000 girls are born with it and much fewer boys. It is caused by...

Mayo Clinic's AI Tool Identifies 9 …

Mayo Clinic researchers have developed a new artificial intelligence (AI) tool that helps clinicians identify brain activity patterns linked to nine types of dementia, including Alzheimer's disease, using a single...

AI Matches Doctors in Mapping Lung Tumor…

In radiation therapy, precision can save lives. Oncologists must carefully map the size and location of a tumor before delivering high-dose radiation to destroy cancer cells while sparing healthy tissue...

AI Detects Fatty Liver Disease with Ches…

Fatty liver disease, caused by the accumulation of fat in the liver, is estimated to affect one in four people worldwide. If left untreated, it can lead to serious complications...

Meet Your Digital Twin

Before an important meeting or when a big decision needs to be made, we often mentally run through various scenarios before settling on the best course of action. But when...