I-Know

I-Know is a knowledge discovery IT -based tool designed to aid early stroke diagnosis, stroke treatment, drug development and identification of risk factors as targets in disease prevention for the benefit of European industry and citizens.

Acute stroke is a major socioeconomic burden in EU. The disabilities following the disease develop rapidly and prompt treatment of patients is imperative. Currently a drug dissolving the blood clot (rtPA - thrombolysis) is the only established treatment, but this is only implemented at highly specialised centres. There is consequently a strong geographical inequality in the availability of this treatment - nationally and internationally within EU.

At the same time there is an intense search by pharmaceutical industry and academic biomedical research to identify drugs that will stop the tissue damage progressing after acute stroke.

The knowledge discovery tool, I-Know will:

  • Provide instant, user-friendly ITbased diagnosis and therapeutic guidance, reducing the infrastructural, economic and educational barriers currently hindering advanced stroke treatment at less specialised units.
  • Use advanced data mining techniques to model disease progression based on large multinational databases providing state-of-theart diagnosis of every EU citizen irrespective of knowledge barriers.
  • Provide a platform for modeling beneficial or adverse effects recorded during clinical trials, allowing optimal use of preclinical data in subsequent individualized patient management.
  • Be designed to integrate data across descriptive levels to devise disease models that will bring scientific progress to stroke research.

For further information, please visit:
http://www.cfin.au.dk

Project co-ordinator:
Dept. Neuroradiology, Aarhus Sygehus, Aarhus University Hospital, (DK)

Partners:

  • Institut National de la Santé et de Recherche Medicale (FR)
  • Université Claude Bernard (FR)
  • Fundació Privada Institut d'Investigació Biomédica de Girona (SP)
  • University of Cambridge (UK)
  • Universitätsklinikum Hamburg-Eppendorf (DE)
  • Universitätsklinikum Freiburg für die Medizinische Fakultät der Albert-Ludwigs-Universität (DE)
  • Systematic Software Engineering A/S (DK)
  • Dimac A/S (DK)

Timetable: from 05/06 – to 04/09

Total cost: € 3.876.347

EC funding: € 3.092.810

Instrument: STREP

Project Identifier: IST-2004-027294

Source: FP6 eHealth Portfolio of Projects

Most Popular Now

AI-Powered CRISPR could Lead to Faster G…

Stanford Medicine researchers have developed an artificial intelligence (AI) tool to help scientists better plan gene-editing experiments. The technology, CRISPR-GPT, acts as a gene-editing “copilot” supported by AI to help...

Groundbreaking AI Aims to Speed Lifesavi…

To solve a problem, we have to see it clearly. Whether it’s an infection by a novel virus or memory-stealing plaques forming in the brains of Alzheimer’s patients, visualizing disease processes...

AI Spots Hidden Signs of Depression in S…

Depression is one of the most common mental health challenges, but its early signs are often overlooked. It is often linked to reduced facial expressivity. However, whether mild depression or...

AI Tools Help Predict Severe Asthma Risk…

Mayo Clinic researchers have developed artificial intelligence (AI) tools that help identify which children with asthma face the highest risk of serious asthma exacerbation and acute respiratory infections. The study...

ChatGPT 4o Therapeutic Chatbot 'Ama…

One of the first randomized controlled trials assessing the effectiveness of a large language model (LLM) chatbot 'Amanda' for relationship support shows that a single session of chatbot therapy...

AI Model Forecasts Disease Risk Decades …

Imagine a future where your medical history could help predict what health conditions you might face in the next two decades. Researchers have developed a generative AI model that uses...

AI Model Indicates Four out of Ten Breas…

A project at Lund University in Sweden has trained an AI model to identify breast cancer patients who could be spared from axillary surgery. The model analyses previously unutilised information...

AI Distinguishes Glioblastoma from Look-…

A Harvard Medical School–led research team has developed an AI tool that can reliably tell apart two look-alike cancers found in the brain but with different origins, behaviors, and treatments. The...

Overcoming the AI Applicability Crisis a…

Opinion Article by Harry Lykostratis, Chief Executive, Open Medical. The government’s 10 Year Health Plan makes a lot of the potential of AI-software to support clinical decision making, improve productivity, and...

Smart Device Uses AI and Bioelectronics …

As a wound heals, it goes through several stages: clotting to stop bleeding, immune system response, scabbing, and scarring. A wearable device called "a-Heal," designed by engineers at the University...

Dartford and Gravesham Implements Clinis…

Dartford and Gravesham NHS Trust has taken a significant step towards a more digital future by rolling out electronic test ordering using Clinisys ICE. The trust deployed the order communications...