HAMAM

Despite tremendous advances in modern imaging technology, both early detection and accurate diagnosis of breast cancer are still unresolved challenges. Today, a variety of imaging modalities and image-guided biopsy procedures exist to identify and characterize morphology and function of suspicious breast tissue. However, a clinically feasible solution for breast imaging, which is both highly sensitive and specific with respect to breast cancer, is still missing. As a consequence, unnecessary biopsies are taken and tumours frequently go undetected until a stage where therapy is costly or unsuccessful.

HAMAM (Highly accurate breast cancer diagnosis through integration of biological knowledge, novel imaging modalities, and modelling) project will tackle this challenge by providing a means to seamlessly integrate the available multi-modal images and the patient information on a single clinical workstation. Based on knowledge gained from a large multi-disciplinary database, populated within the scope of this project, suspicious breast tissue will be characterised and classified.

HAMAM will achieve this by:

  • Building the tools needed to integrate datasets / modalities into a single interface.
  • Providing pre processing / standardization tools that will allow for optimal comparison of disparate data
  • Building spatial correlation information datasets to allow for new similarity and multimodal tissue models. These will be key in the detection and diagnosis of breast cancer
  • Building in adaptability that allows for the integration of other sources of knowledge such as tumour models, genetic data, genotype, phenotype and standardised imaging.

The exact diagnosis of suspicious breast tissue is ambiguous in many cases. HAMAM will resolve this using the statistical knowledge extracted from the large case database. The clinical workstation will suggest additional image modalities that may be captured to optimally resolve these uncertainties. The workstation thus guides the clinician in establishing a patient specific optimal diagnosis. This ultimately leads to a more specific and individual diagnosis.

For further information, please visit:
http://www.hamam-project.eu

Project co-ordinator:
EIBIR gemeinnuetzige GmbH zur Foerderung der. Erforschung der biomedizinischen Bildgebung

Partners:

  • Boca Raton Community Hospital Inc (USA)
  • MeVis Research GmbH (Germany)
  • MeVis Medical Solutions AG (Germany)
  • University College London (United Kingdom)
  • Radboud Universiteit Nijmegen - Stichting Katholieke Universiteit (Netherlands)
  • Charité - Universitätsmedizin Berlin (Germany)
  • The University of Dundee (United Kingdom)
  • Eidgenössische Technische Hochschule Zürich (Switzerland)

Timetable: from 09/2008 - to 08/2011

Total cost: € 4.250.000

EC funding: € 3.100.000

Programme Acronym: FP7-ICT

Subprogramme Area: Virtual physiological human

Contract type: Collaborative project (generic)


Related news article:

Most Popular Now

Stepping Hill Hospital Announced as SPAR…

Stepping Hill Hospital, part of Stockport NHS Foundation Trust, has replaced its bedside units with state-of-the art devices running a full range of information, engagement, communications and productivity apps, to...

DMEA 2025: Digital Health Worldwide in B…

8 - 10 April 2025, Berlin, Germany. From the AI Act, to the potential of the European Health Data Space, to the power of patient data in Scandinavia - DMEA 2025...

Is AI in Medicine Playing Fair?

As artificial intelligence (AI) rapidly integrates into health care, a new study by researchers at the Icahn School of Medicine at Mount Sinai reveals that all generative AI models may...

New System for the Early Detection of Au…

A team from the Human-Tech Institute-Universitat Politècnica de València has developed a new system for the early detection of Autism Spectrum Disorder (ASD) using virtual reality and artificial intelligence. The...

Generative AI's Diagnostic Capabili…

The use of generative AI for diagnostics has attracted attention in the medical field and many research papers have been published on this topic. However, because the evaluation criteria were...

Diagnoses and Treatment Recommendations …

A new study led by Prof. Dan Zeltzer, a digital health expert from the Berglas School of Economics at Tel Aviv University, compared the quality of diagnostic and treatment recommendations...

AI Tool can Track Effectiveness of Multi…

A new artificial intelligence (AI) tool that can help interpret and assess how well treatments are working for patients with multiple sclerosis (MS) has been developed by UCL researchers. AI uses...

Surrey and Sussex Healthcare NHS Trust g…

Surrey and Sussex Healthcare NHS Trust has marked an important milestone in connecting busy radiologists across large parts of South East England, following the successful go live of Sectra's enterprise...

Dr Jason Broch Joins the Highland Market…

The Highland Marketing advisory board has welcomed a new member - Dr Jason Broch, a GP and director with a strong track record in the NHS and IT-enabled transformation. Dr Broch...

DMEA 2025 Ends with Record Attendance an…

8 - 10 April 2025, Berlin, Germany. DMEA 2025 came to a successful close with record attendance and an impressive program. 20,500 participants attended Europe's leading digital health event over the...

Multi-Resistance in Bacteria Predicted b…

An AI model trained on large amounts of genetic data can predict whether bacteria will become antibiotic-resistant. The new study shows that antibiotic resistance is more easily transmitted between genetically...

AI-Driven Smart Devices to Transform Hea…

AI-powered, internet-connected medical devices have the potential to revolutionise healthcare by enabling early disease detection, real-time patient monitoring, and personalised treatments, a new study suggests. They are already saving lives...