Using AI to Predict Bone Fractures in Cancer Patients

As medicine continues to embrace machine learning, a new study suggests how scientists may use artificial intelligence to predict how cancer may affect the probability of fractures along the spinal column.

In the U.S., more than 1.6 million cases of cancer are diagnosed every year, and about 10% of those patients experience spinal metastasis - when disease spreads from other places in the body to the spine. One of the biggest clinical concerns patients face is the risk of spinal fractures due to these tumors, which can lead to severe pain and spinal instability.

"Spinal fracture increases the risk of patient death by about 15%," said Soheil Soghrati, co-author of the study and associate professor of mechanical and aerospace engineering at The Ohio State University. "By predicting the outcome of these fractures, our research offers medical experts the opportunity to design better treatment strategies, and help patients make better-informed decisions."

While many of the changes the body undergoes when exposed to cancerous lesions are still a mystery, with the power of computational modeling, scientists can get a better idea of what’s happening to the spine, said Soghrati.

Their study, published in the International Journal for Numerical Methods in Biomedical Engineering, describes how the researchers trained an AI-assisted framework called ReconGAN to create a digital twin, or a virtual reconstruction of a patient's vertebra.

Unlike 3D printing, where a virtual model is turned into a physical object, the concept of a digital twin involves building a computer simulation of its real-life counterpart without creating it physically. Such a simulation can be used to predict an object or system's future performance - in this case, how much stress the vertebra can take before cracking under pressure.

By training ReconGAN on MRI and micro-CT images obtained by taking slice-by-slice pictures of vertebrae acquired from a cadaver, researchers were able to generate realistic micro-structural models of the spine. Using their simulation, Soghrati's team was also able to virtually enlarge the model, a capability the study says is imperative to understanding and incorporating changes into the entirety of a vertebra’s geometric shape.

"What really makes the work in a distinct way is how detailed we were able to model the geometry of the vertebra," said Soghrati. "We can virtually evolve the same bone from one stage to another."

In this case, the researchers used CT/MRI scans from a 51-year-old female lung cancer patient whose cancer had metastasized to simulate what might happen if cancer weakened some of the vertebrae and how that would affect how much stress the bones could take before fracturing.

The model predicted how much strength parts of the vertebra would lose as a result of the tumors, as well as other changes that could be expected as the cancer progressed. Some of their predictions were confirmed by clinical observations in cancer patients.

For a field like orthopedics, using a non-invasive tool like the digital twin can help surgeons understand new therapies, simulate different surgical scenarios and envision how the bone will change over time, either due to bone weakness or to the effects of radiation. The digital twin can also be modified to patient-specific needs, Soghrati said.

"The ultimate goal is to develop a digital twin of everything a surgeon may operate on,” he said. “Right now, they’re only used for very, very challenging surgeries, but we want to help run those simulations and tune those parameters even more."

But this was just a feasibility study and much more work is needed, Soghrati said. ReconGAN was trained on data from only one cadaveric sample, and more data is needed for AI to be perfected.

Ahmadian H, Mageswaran P, Walter BA, Blakaj DM, Bourekas EC, Mendel E, Marras WS, Soghrati S.
Toward an artificial intelligence-assisted framework for reconstructing the digital twin of vertebra and predicting its fracture response.
Int J Numer Method Biomed Eng. 2022 Apr 11:e3601. doi: 10.1002/cnm.3601

Most Popular Now

Open Medical Works with Moray's Dig…

Open Medical is working with the Digital Health & Care Innovation Centre’s Rural Centre of Excellence on a referral management plan, as part of a research and development scheme to...

Generative AI on Track to Shape the Futu…

Using advanced artificial intelligence (AI), researchers have developed a novel method to make drug development faster and more efficient. In a new paper, Xia Ning, lead author of the study and...

Reorganisation, Consolidation, and Cuts:…

NHS England has been downsized and abolished. Integrated care boards have been told to change function, consolidate, and deliver savings. Trusts are planning big cuts. The Highland Marketing advisory board...

Personalized Breast Cancer Prevention No…

A new telemedicine service for personalised breast cancer prevention has launched at preventcancer.co.uk. It allows women aged 30 to 75 across the UK to understand their risk of developing breast...

New App may Help Caregivers of People Ge…

A new study by investigators from Mass General Brigham showed that a new app they created can help improve the quality of life for caregivers of patients undergoing bone marrow...

An App to Detect Heart Attacks and Strok…

A potentially lifesaving new smartphone app can help people determine if they are suffering heart attacks or strokes and should seek medical attention, a clinical study suggests. The ECHAS app (Emergency...

A Machine Learning Tool for Diagnosing, …

Scientists aiming to advance cancer diagnostics have developed a machine learning tool that is able to identify metabolism-related molecular profile differences between patients with colorectal cancer and healthy people. The analysis...

Fine-Tuned LLMs Boost Error Detection in…

A type of artificial intelligence (AI) called fine-tuned large language models (LLMs) greatly enhances error detection in radiology reports, according to a new study published in Radiology, a journal of...

DeepSeek-R1 Offers Promising Potential t…

A joint research team from The Hong Kong University of Science and Technology and The Hong Kong University of Science and Technology (Guangzhou) has published a perspective article in MedComm...

Deep Learning can Predict Lung Cancer Ri…

A deep learning model was able to predict future lung cancer risk from a single low-dose chest CT scan, according to new research published at the ATS 2025 International Conference...