Using AI to Predict Bone Fractures in Cancer Patients

As medicine continues to embrace machine learning, a new study suggests how scientists may use artificial intelligence to predict how cancer may affect the probability of fractures along the spinal column.

In the U.S., more than 1.6 million cases of cancer are diagnosed every year, and about 10% of those patients experience spinal metastasis - when disease spreads from other places in the body to the spine. One of the biggest clinical concerns patients face is the risk of spinal fractures due to these tumors, which can lead to severe pain and spinal instability.

"Spinal fracture increases the risk of patient death by about 15%," said Soheil Soghrati, co-author of the study and associate professor of mechanical and aerospace engineering at The Ohio State University. "By predicting the outcome of these fractures, our research offers medical experts the opportunity to design better treatment strategies, and help patients make better-informed decisions."

While many of the changes the body undergoes when exposed to cancerous lesions are still a mystery, with the power of computational modeling, scientists can get a better idea of what’s happening to the spine, said Soghrati.

Their study, published in the International Journal for Numerical Methods in Biomedical Engineering, describes how the researchers trained an AI-assisted framework called ReconGAN to create a digital twin, or a virtual reconstruction of a patient's vertebra.

Unlike 3D printing, where a virtual model is turned into a physical object, the concept of a digital twin involves building a computer simulation of its real-life counterpart without creating it physically. Such a simulation can be used to predict an object or system's future performance - in this case, how much stress the vertebra can take before cracking under pressure.

By training ReconGAN on MRI and micro-CT images obtained by taking slice-by-slice pictures of vertebrae acquired from a cadaver, researchers were able to generate realistic micro-structural models of the spine. Using their simulation, Soghrati's team was also able to virtually enlarge the model, a capability the study says is imperative to understanding and incorporating changes into the entirety of a vertebra’s geometric shape.

"What really makes the work in a distinct way is how detailed we were able to model the geometry of the vertebra," said Soghrati. "We can virtually evolve the same bone from one stage to another."

In this case, the researchers used CT/MRI scans from a 51-year-old female lung cancer patient whose cancer had metastasized to simulate what might happen if cancer weakened some of the vertebrae and how that would affect how much stress the bones could take before fracturing.

The model predicted how much strength parts of the vertebra would lose as a result of the tumors, as well as other changes that could be expected as the cancer progressed. Some of their predictions were confirmed by clinical observations in cancer patients.

For a field like orthopedics, using a non-invasive tool like the digital twin can help surgeons understand new therapies, simulate different surgical scenarios and envision how the bone will change over time, either due to bone weakness or to the effects of radiation. The digital twin can also be modified to patient-specific needs, Soghrati said.

"The ultimate goal is to develop a digital twin of everything a surgeon may operate on,” he said. “Right now, they’re only used for very, very challenging surgeries, but we want to help run those simulations and tune those parameters even more."

But this was just a feasibility study and much more work is needed, Soghrati said. ReconGAN was trained on data from only one cadaveric sample, and more data is needed for AI to be perfected.

Ahmadian H, Mageswaran P, Walter BA, Blakaj DM, Bourekas EC, Mendel E, Marras WS, Soghrati S.
Toward an artificial intelligence-assisted framework for reconstructing the digital twin of vertebra and predicting its fracture response.
Int J Numer Method Biomed Eng. 2022 Apr 11:e3601. doi: 10.1002/cnm.3601

Most Popular Now

Health Fabric and Sandwell Council Secur…

Digital health company Health Fabric is preparing to work with Sandwell Council after learning that it has secured support from The Healthy Ageing Challenge. The company will work with public health...

Philips Highlights AI-Powered Precision …

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, showcases its award-winning AI-powered systems and solutions debuting at the European Congress of Radiology (ECR, July 13-17, Vienna...

Could a Computer Diagnose Alzheimer's Di…

It takes a lot of time - and money - to diagnose Alzheimer's disease. After running lengthy in-person neuropsychological exams, clinicians have to transcribe, review, and analyze every response in...

Siemens Healthineers Accelerates and Imp…

Siemens Healthineers presents functionalities powered by Artificial Intelligence (AI) that accelerate and improve Magnetic Resonance Imaging (MRI). The quality of MR imaging is defined by the trade-off between scan time...

Building the Right Foundations to Delive…

Opinion Article by Gary Birks, Gary Birks, General Manager, UK and Ireland, Orion Health. The latest strategy for health and care IT looks to build on what has been achieved over...

Using Technology to Support Primary Care

Opinion Article by Paul Bensley, Managing Director of Primary Care Cloud Telephony Specialist X-on. It is good to see the publication of this strategy [A plan for digital health and social...

A Machine Learning Model to Predict Immu…

Immunotherapy is a new cancer treatment that activates the body's immune system to fight against cancer cells without using chemotherapy or radiotherapy. It has fewer side effects than conventional anticancer...

Virtual Reality App Trial Shown to Reduc…

Results from a University of Otago, Christchurch trial suggest fresh hope for the estimated one-in-twelve people worldwide suffering from a fear of flying, needles, heights, spiders and dogs. The trial, led...

Two Leading CIOs Join the Highland Marke…

Two of the NHS' most dynamic chief information officers have joined Highland Marketing’s advisory board of NHS IT professionals and health tech industry experts. Ian Hogan, a CIO at the Northern...

Teaching AI to Ask Clinical Questions

Physicians often query a patient's electronic health record for information that helps them make treatment decisions, but the cumbersome nature of these records hampers the process. Research has shown that...

AI Analyses Neuron Changes to Detect whe…

A research group from Nagoya University in Japan has developed an artificial intelligence (AI) for analyzing cell images that uses machine learning to predict the therapeutic effect of drugs. Called...

MIT Engineers Develop Stickers that can …

Ultrasound imaging is a safe and noninvasive window into the body’s workings, providing clinicians with live images of a patient’s internal organs. To capture these images, trained technicians manipulate ultrasound...