QResearch Produces New Fracture Risk Score

A simple new score which can predict the risk of patients suffering fractured bones due to osteoporosis has been developed using the QResearch database. The algorithm, QFractureScores, can be used by clinicians and patients and calculates an individual's percentage risk of an osteoporotic fracture over the next ten years, allowing early intervention to take place.

The tool, which is available as open source software at www.qfracture.org, was developed using data from QResearch - the world's largest medical database for ethical research.

A not-for-profit partnership between the University of Nottingham and leading healthcare IT provider EMIS, QResearch collects anonymised patient data from EMIS GP practices across the UK in order to detect patterns of disease and other conditions.

The anonymised health records of more than two million men and women, registered at 357 GP practices in England and Wales, were analysed over a 15 year period in order to produce the QFractureScores algorithm.

Julia Hippisley-Cox, Professor of Clinical Epidemiology and Clinical Practice at the University of Nottingham, who is a co-director of QResearch and director of ClinRisk Ltd (which developed the open source software) said: "Osteoporotic fracture is a major cause of illness and a considerable burden to the health service.

"The new algorithm is able to identify patients who are at high risk of fracture who may benefit from early interventions. It is suitable for both clinical settings and for self assessment, making it an extremely valuable and easy-to-use tool."

Dr David Stables, co-founder of EMIS and a co-founder of QResearch, said: "This is a great example of how we can improve patient care and save the health service money by using the vast store of accurate, anonymous data contained within QResearch.

"Making the new algorithm available as open source software stands to widen its use, so that even more people can benefit."

Users of the new algorithm enter details including age, sex, weight, height and illnesses, in order to determine the risk of a fracture.

The QResearch database has already been used to produce the QRISK and QRISK2 formulas, which identify patients most at risk of developing cardiovascular disease, and the QDScore, an algorithm which can identify people at high risk of diabetes.

More than 600 EMIS practices make regular contributions to the QResearch database, representing around eight million patients.

Related news articles:

  • QRESEARCH is a non-profit making venture run by the University of Nottingham in collaboration with EMIS. More than 600 EMIS practices, representing around eight million patients, regularly contribute to the database. The system anonymises and uploads practices' clinical data to the central database. Then, to protect patient confidentiality, the data are further anonymised and the figures are totalled to produce data that are suitable for research. (www.qresearch.org).
  • EMIS is the UK's leading supplier of IT systems to GPs, providing the software that holds medical records for 39 million NHS patients nationwide. Around 56 per cent of GPs in the UK currently use EMIS software. www.emis-online.com
  • ClinRisk Ltd produces software to help ensure the safe and reliable implementation of clinical risk scores into clinical practice and their wide availability.

Most Popular Now

Giving Doctors an AI-Powered Head Start …

Detection of melanoma and a range of other skin diseases will be faster and more accurate with a new artificial intelligence (AI) powered tool that analyses multiple imaging types simultaneously...

Philips Foundation 2024 Annual Report: E…

Marking its tenth anniversary, Philips Foundation released its 2024 Annual Report, highlighting a year in which the Philips Foundation helped provide access to quality healthcare for 46.5 million people around...

Scientists Argue for More FDA Oversight …

An agile, transparent, and ethics-driven oversight system is needed for the U.S. Food and Drug Administration (FDA) to balance innovation with patient safety when it comes to artificial intelligence-driven medical...

AI Agents for Oncology

Clinical decision-making in oncology is challenging and requires the analysis of various data types - from medical imaging and genetic information to patient records and treatment guidelines. To effectively support...

Start-ups in the Spotlight at MEDICA 202…

17 - 20 November 2025, Düsseldorf, Germany. MEDICA, the leading international trade fair and platform for healthcare innovations, will once again confirm its position as the world's number one hotspot for...

AI Medical Receptionist Modernizing Doct…

A virtual medical receptionist named "Cassie," developed through research at Texas A&M University, is transforming the way patients interact with health care providers. Cassie is a digital-human assistant created by Humanate...

Using Data and AI to Create Better Healt…

Academic medical centers could transform patient care by adopting principles from learning health systems principles, according to researchers from Weill Cornell Medicine and the University of California, San Diego. In...

AI Tool Set to Transform Characterisatio…

A multinational team of researchers, co-led by the Garvan Institute of Medical Research, has developed and tested a new AI tool to better characterise the diversity of individual cells within...

AI Detects Hidden Heart Disease Using Ex…

Mass General Brigham researchers have developed a new AI tool in collaboration with the United States Department of Veterans Affairs (VA) to probe through previously collected CT scans and identify...

Highland Marketing Announced as Official…

Highland Marketing has been named, for the second year running, the official communications partner for HETT Show 2025, the UK's leading digital health conference and exhibition. Taking place 7-8 October...

Human-AI Collectives Make the Most Accur…

Diagnostic errors are among the most serious problems in everyday medical practice. AI systems - especially large language models (LLMs) like ChatGPT-4, Gemini, or Claude 3 - offer new ways...

MHP-Net: A Revolutionary AI Model for Ac…

Liver cancer is the sixth most common cancer globally and a leading cause of cancer-related deaths. Accurate segmentation of liver tumors is a crucial step for the management of the...