What the Radiologist should Know about Artificial Intelligence - An ESR White Paper

This paper aims to provide a review of the basis for application of AI in radiology, to discuss the immediate ethical and professional impact in radiology, and to consider possible future evolution. Even if AI does add significant value to image interpretation, there are implications outside the traditional radiology activities of lesion detection and characterisation. In radiomics, AI can foster the analysis of the features and help in the correlation with other omics data. Imaging biobanks would become a necessary infrastructure to organise and share the image data from which AI models can be trained. AI can be used as an optimising tool to assist the technologist and radiologist in choosing a personalised patient's protocol, tracking the patient's dose parameters, providing an estimate of the radiation risks. AI can also aid the reporting workflow and help the linking between words, images, and quantitative data. Finally, AI coupled with CDS can improve the decision process and there by optimise clinical and radiological workflow.

This paper was prepared by Prof. Emanuele Neri (Chair of the ESR eHealth and Informatics Subcommittee), Prof. Nandita de Souza (Chair of the ESR European Imaging Biomarkers Alliance - EIBALL Subcommittee), and Dr. Adrian Brady (Chair of the ESR Quality, Safety and Standards Committee), on behalf of and supported by the eHealth and Informatics Subcommittee of the European Society of Radiology (ESR).

The authors gratefully acknowledge the valuable contribution to the paper of Dr. Angel Alberich Bayarri, Prof. Christoph D. Becker, Dr. Francesca Coppola, and Dr. Jacob Visser, as members of the ESR eHealth and Informatics Subcommittee.

The paper was approved by the ESR Executive Council in February 2019.

Download: What the Radiologist should Know about Artificial Intelligence - An ESR White Paper (.pdf, 546 KB).

Download from eHealthNews.eu: What the Radiologist should Know about Artificial Intelligence - An ESR White Paper (.pdf, 546 KB).

Most Popular Now

Study Finds One-Year Change on CT Scans …

Researchers at National Jewish Health have shown that subtle increases in lung scarring, detected by an artificial intelligence-based tool on CT scans taken one year apart, are associated with disease...

New AI Tools Help Scientists Track How D…

Artificial intelligence (AI) can solve problems at remarkable speed, but it’s the people developing the algorithms who are truly driving discovery. At The University of Texas at Arlington, data scientists...

Yousif's Story with Sectra and The …

Embarking on healthcare technology career after leaving his home as a refugee during his teenage years, Yousif is passionate about making a difference. He reflects on an apprenticeship in which...

AI Tool Offers Deep Insight into the Imm…

Researchers explore the human immune system by looking at the active components, namely the various genes and cells involved. But there is a broad range of these, and observations necessarily...

New Antibiotic Targets IBD - and AI Pred…

Researchers at McMaster University and the Massachusetts Institute of Technology (MIT) have made two scientific breakthroughs at once: they not only discovered a brand-new antibiotic that targets inflammatory bowel diseases...

Highland to Help Companies Seize 'N…

Health tech growth partner Highland has today revealed its new identity - reflecting a sharper focus as it helps health tech companies to find market opportunities, convince target audiences, and...