Strategic Research and Innovation Roadmap of Trustworthy AI

This document is the first version of the Strategic Research and Innovation Roadmap of the TAILOR project, focussed on Trustworthy Artificial Intelligence (AI) through Learning, Optimization and Reasoning. The project objectives are extremely ambitious, and address topics that are currently very actively investigated. Therefore, defining a roadmap is itself an ambitious goal. We have started analysing many documents containing Roadmaps and Research and Innovation agendas of AI related initiatives (in particular we have analysed the AI4EU Strategic Research and Innovation Agenda and the AI, Data and Robotics PPP Strategic Research Innovation and Deployment Agenda and the AI Watch Index 2021). Also, strategic and roadmapping documents of initiatives from connected fields (e.g., HPC, IoT, Cybersecurity) have been evaluated to find connections and synergies.

As in the Ethical Guidelines for Trustworthy Artificial Intelligence document released in 2019 by the High-Level Expert Group on AI, we need to consolidate ongoing research activities, solid foundational theories, and methodological guidelines that are not yet common in neither industry nor academia. To this end, we have consolidated input coming from scientific and innovation work packages of the TAILOR Network of Excellence, that have released impressive scientific results in one and a half year, but these results still need to be conceptualised, organised, and classified in a rationale shaping future avenues.

Still, in the limited time passed from the project start, the TAILOR consortium has identified interesting research directions and urgent industrial needs. Prioritisation of actions and their timing is not yet perfect, but we are confident that a clear plan will be available for the second and final version of the SRIR.

The document is organised with a short snapshot of the state of European research and innovation landscape. We then define the challenges related to the dimensions of trustworthy AI, namely explainability, safety, robustness, fairness, accountability, privacy and sustainability.

Following TAILOR work packages, learning, optimization and reasoning are considered and several aspects of their integration are analysed: unifying formalisms for integrating reasoning and learning, learning and reasoning on how to act, social perspectives, and AutoAI. A last section is devoted to Foundation models that have been gaining momentum since the TAILOR proposal was written.

Download: Strategic Research and Innovation Roadmap of Trustworthy AI (1.102 KB).

Download from DIGITAL HEALTH NEWS: Strategic Research and Innovation Roadmap of Trustworthy AI (1.102 KB).

Most Popular Now

Researchers Invent AI Model to Design Ne…

Researchers at McMaster University and Stanford University have invented a new generative artificial intelligence (AI) model which can design billions of new antibiotic molecules that are inexpensive and easy to...

ChatGPT can Produce Medical Record Notes…

The AI model ChatGPT can write administrative medical notes up to ten times faster than doctors without compromising quality. This is according to a new study conducted by researchers at...

Alcidion and Novari Health Forge Strateg…

Alcidion Group Limited, a leading provider of FHIR-native patient flow solutions for healthcare, and Novari Health, a market leader in waitlist management and referral management technologies, have joined forces to...

Greater Manchester Reaches New Milestone…

Radiologists and radiographers at Northern Care Alliance NHS Foundation Trust have become the first in Greater Manchester to use the Sectra picture archiving and communication system (PACS) to report on...

Powerful New AI can Predict People'…

A powerful new tool in artificial intelligence is able to predict whether someone is willing to be vaccinated against COVID-19. The predictive system uses a small set of data from demographics...

Can Language Models Read the Genome? Thi…

The same class of artificial intelligence that made headlines coding software and passing the bar exam has learned to read a different kind of text - the genetic code. That code...

Advancing Drug Discovery with AI: Introd…

A transformative study published in Health Data Science, a Science Partner Journal, introduces a groundbreaking end-to-end deep learning framework, known as Knowledge-Empowered Drug Discovery (KEDD), aimed at revolutionizing the field...

Study Shows Human Medical Professionals …

When looking for medical information, people can use web search engines or large language models (LLMs) like ChatGPT-4 or Google Bard. However, these artificial intelligence (AI) tools have their limitations...

Bayer and Google Cloud to Accelerate Dev…

Bayer and Google Cloud announced a collaboration on the development of artificial intelligence (AI) solutions to support radiologists and ultimately better serve patients. As part of the collaboration, Bayer will...

Wanted: Young Talents. DMEA Sparks Bring…

9 - 11 April 2024, Berlin, Germany. The digital health industry urgently needs skilled workers, which is why DMEA sparks focuses on careers, jobs and supporting young people. Against the backdrop of...

Shared Digital NHS Prescribing Record co…

Implementing a single shared digital prescribing record across the NHS in England could avoid nearly 1 million drug errors every year, stopping up to 16,000 fewer patients from being harmed...

Ask Chat GPT about Your Radiation Oncolo…

Cancer patients about to undergo radiation oncology treatment have lots of questions. Could ChatGPT be the best way to get answers? A new Northwestern Medicine study tested a specially designed ChatGPT...