Artificial Intelligence in Healthcare Report

This study presents an overview of the development, adoption and use of Artificial Intelligence (AI) technologies and applications in the healthcare sector across all Member States. The main aim of this study was to support the European Commission in identifying and addressing any issues that might be hindering the wider adoption of AI technologies in the healthcare sector. The study will help the Commission to take action to achieve its long-term goal on the effective implementation of AI in the healthcare sector, based around common legislation and policy framework.

According to the study, while most EU Member States have developed AI strategies that identify healthcare as a priority sector, there are no policies within those strategies targeting healthcare in particular. However, EU Member States have made progress in proposing regulatory frameworks around the management of health data, which is a foundational element for the further development of AI technologies in the healthcare sector.

In terms of adoption, while healthcare organisations in the EU are open to adopting AI applications, adoption is still currently limited to specific departments, teams and application areas. The lack of trust in AI-driven decision support is hindering the wider adoption, while issues around the integration of new technologies into current practices are also among the main challenges identified by relevant stakeholders in EU Member States.

The scientific output in the area of AI in healthcare comes mainly from the larger Member States. They are the most active countries at collaborating between themselves and with smaller Member States. Additionally, a need for further financial support has been identified to enhance the development of AI technologies, which are translated into clinical practice. It includes support for targeting the acquisition of Intellectual Property (IP) rights for the already developed technologies.

The study has highlighted 6 categories where the European Commission is suggested to focus to support the development and adoption of AI technologies in the healthcare sector across the EU. These include:

  • a policy and legal framework supporting the further development and adoption of AI aimed at the healthcare sector in particular;
  • initiatives supporting further investment in the area;
  • actions and initiatives that will enable the access, use and exchange of healthcare data with a view to using AI;
  • initiatives to upskill healthcare professionals and to educate AI developers on current clinical practices and needs;
  • actions addressing culture issues and building trust in the use of AI in the healthcare sector;
  • policies supporting the translation of research into clinical practice.

Country Factsheets

The country factsheets present an overview of the current situation in each EU Member State with regards to the development, adoption and use of Artificial Intelligence (AI) technologies and applications in the healthcare sector. The factsheets aim to support the European Commission in identifying the current state of development and adoption of AI in the healthcare sector in each Member State and identify any differences that might bring to light specific challenges and obstacles to the wider adoption across the EU.

The country factsheets are based on an analysis of the relevant legislation and policy framework around AI in each Member State. They look at the research and innovation landscape of each country in the area of AI in healthcare, the presence of cross-border collaborations in research, the start-up ecosystem in each country, and the awareness around AI technologies in the healthcare sector based on social media mentions.

While most EU Member States are taking measures towards establishing strategies around the use of AI in healthcare, most initiatives focus on the research and innovation area. There is little activity on initiatives to promote adoption by the sector itself. The start-up ecosystem varies across EU Member States and is mostly driven by private initiatives and support networks.

Finally, awareness around EU Member States on AI in healthcare as seen on social media and news sites are largely event-related, with spikes in awareness coinciding with published articles or national-level initiatives appearing in the local press.

Download: Artificial intelligence in healthcare - Final Report (3.095 KB).

Download: Artificial intelligence in healthcare - Final Country Factsheets (8.117 KB).

Download from DIGITAL HEALTH NEWS: Artificial intelligence in healthcare - Final Report (3.095 KB).

Download from DIGITAL HEALTH NEWS: Artificial intelligence in healthcare - Final Country Factsheets (8.117 KB).

Most Popular Now

Transforming Drug Discovery with AI

A new AI-powered program will allow researchers to level up their drug discovery efforts. The program, called TopoFormer, was developed by an interdisciplinary team led by Guowei Wei, a Michigan...

Maternity Tech Launched to Help NHS Meas…

Health tech provider C2-Ai has formally launched a new 'observatory' system to help hospitals gain a better understanding of risks, outcomes and safety within maternity and neonatal services. Announced at the...

We may Soon be Able to Detect Cancer wit…

A new paper in Biology Methods & Protocols, published by Oxford University Press, indicates that it may soon be possible for doctors to use artificial intelligence (AI) to detect and...

Health Innovation East Partners with Cog…

Health Innovation East, the innovation arm of the NHS in the East of England and Cogniss, a no-code ecosystem for digital health solutions, have announced a strategic partnership to launch...

Large Language Models Illuminate a Progr…

This study is led by Prof. Bin Dong (Beijing International Center for Mathematical Research, Peking University) and Prof. Lin Shen (Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational...

New Computational Model of Real Neurons …

Nearly all the neural networks that power modern artificial intelligence (AI) tools such as ChatGPT are based on a 1960s-era computational model of a living neuron. A new model developed...

Meet CARMEN, a Robot that Helps People w…

Meet CARMEN, short for Cognitively Assistive Robot for Motivation and Neurorehabilitation - a small, tabletop robot designed to help people with mild cognitive impairment (MCI) learn skills to improve memory...

AI Matches Protein Interaction Partners

Proteins are the building blocks of life, involved in virtually every biological process. Understanding how proteins interact with each other is crucial for deciphering the complexities of cellular functions, and...

AI Model to Improve Patient Response to …

A new artificial intelligence (AI) tool that can help to select the most suitable treatment for cancer patients has been developed by researchers at The Australian National University (ANU). DeepPT, developed...

Mobile Phone Data Helps Track Pathogen S…

A new way to map the spread and evolution of pathogens, and their responses to vaccines and antibiotics, will provide key insights to help predict and prevent future outbreaks. The...

Can AI Tell you if You Have Osteoporosis…

Osteoporosis is so difficult to detect in early stage it’s called the "silent disease." What if artificial intelligence could help predict a patient’s chances of having the bone-loss disease before...

Study Reveals Why AI Models that Analyze…

Artificial intelligence (AI) models often play a role in medical diagnoses, especially when it comes to analyzing images such as X-rays. However, studies have found that these models don’t always...