Why Do Evaluations of eHealth Programs Fail? An Alternative Set of Guiding Principles

Why Do Evaluations of eHealth Programs Fail? An Alternative Set of Guiding Principles
Much has been written about why electronic health (eHealth) initiatives fail. Less attention has been paid to why evaluations of such initiatives fail to deliver the insights expected of them. PLoS Medicine has published three papers offering a "robust" and "scientific" approach to eHealth evaluation. One recommended systematically addressing each part of a "chain of reasoning", at the centre of which was the program's goals. Another proposed a quasi-experimental step-wedge design, in which late adopters of eHealth innovations serve as controls for early adopters. Interestingly, the authors of the empirical study flagged by these authors as an exemplary illustration of the step-wedge design subsequently abandoned it in favour of a largely qualitative case study because they found it impossible to establish anything approaching a controlled experiment in the study's complex, dynamic, and heavily politicised context.

The approach to evaluation presented in the previous PLoS Medicine series rests on a set of assumptions that philosophers of science call "positivist": that there is an external reality that can be objectively measured; that phenomena such as "project goals", "outcomes", and "formative feedback" can be precisely and unambiguously defined; that facts and values are clearly distinguishable; and that generalisable statements about the relationship between input and output variables are possible.

Read on-line: Why Do Evaluations of eHealth Programs Fail? An Alternative Set of Guiding Principles

Download from eHealthNews.eu Portal's mirror: Why Do Evaluations of eHealth Programs Fail? An Alternative Set of Guiding Principles (.pdf, 99 KB).

Citation: Greenhalgh T, Russell J (2010) Why Do Evaluations of eHealth Programs Fail? An Alternative Set of Guiding Principles. PLoS Med 7(11): e1000360. doi:10.1371/journal.pmed.1000360

Copyright: © 2010 Greenhalgh, Russell. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Most Popular Now

Using Data and AI to Create Better Healt…

Academic medical centers could transform patient care by adopting principles from learning health systems principles, according to researchers from Weill Cornell Medicine and the University of California, San Diego. In...

AI Medical Receptionist Modernizing Doct…

A virtual medical receptionist named "Cassie," developed through research at Texas A&M University, is transforming the way patients interact with health care providers. Cassie is a digital-human assistant created by Humanate...

AI Tool Set to Transform Characterisatio…

A multinational team of researchers, co-led by the Garvan Institute of Medical Research, has developed and tested a new AI tool to better characterise the diversity of individual cells within...

Integrating Care Records is Good. Using …

Opinion Article by Dr Paul Deffley, Chief Medical Officer, Alcidion. A single patient record already exists in the NHS. Or at least, that’s a perception shared by many. A survey of...

AI could Help Pathologists Match Cancer …

A new study by researchers at the Icahn School of Medicine at Mount Sinai, Memorial Sloan Kettering Cancer Center, and collaborators, suggests that artificial intelligence (AI) could significantly improve how...

Should AI Chatbots Replace Your Therapis…

The new study exposes the dangerous flaws in using artificial intelligence (AI) chatbots for mental health support. For the first time, the researchers evaluated these AI systems against clinical standards...

AI Model Converts Hospital Records into …

UCLA researchers have developed an AI system that turns fragmented electronic health records (EHR) normally in tables into readable narratives, allowing artificial intelligence to make sense of complex patient histories...

AI Detects Early Signs of Osteoporosis f…

Investigators have developed an artificial intelligence-assisted diagnostic system that can estimate bone mineral density in both the lumbar spine and the femur of the upper leg, based on X-ray images...

Mayo Clinic's AI Tool Identifies 9 …

Mayo Clinic researchers have developed a new artificial intelligence (AI) tool that helps clinicians identify brain activity patterns linked to nine types of dementia, including Alzheimer's disease, using a single...

Forging a Novel Therapeutic Path for Pat…

Rett syndrome is a devastating rare genetic childhood disorder primarily affecting girls. Merely 1 out of 10,000 girls are born with it and much fewer boys. It is caused by...

AI Sharpens Pathologists' Interpret…

Pathologists' examinations of tissue samples from skin cancer tumours improved when they were assisted by an AI tool. The assessments became more consistent and patients' prognoses were described more accurately...

AI Matches Doctors in Mapping Lung Tumor…

In radiation therapy, precision can save lives. Oncologists must carefully map the size and location of a tumor before delivering high-dose radiation to destroy cancer cells while sparing healthy tissue...