AI Drives Development of Cancer Fighting Software

University of Houston researchers and their students are developing a new software technology, based on artificial intelligence, for advancing cell-based immunotherapy to treat cancer and other diseases.

CellChorus Inc., a spinoff from the University of Houston, is commercializing the UH-developed Time-lapse Imaging Microscopy In Nanowell Grids™ platform for dynamic single-cell analysis with label-free analysis. Now they've received a $2.5 million grant from the National Center for Advancing Translational Sciences of the National Institutes of Health to fast-track the development of an advanced "label-free" version of this technology in partnership with the University of Houston.

Badri Roysam, Hugh Roy and Lillie Cranz Cullen University Professor of Electrical and Computer Engineering at the University of Houston, is collaborating with Professor Navin Varadarajan on the project. Varadarjan is an M.D. Anderson Professor, Chemical and Biomolecular Engineering also at UH and co-founder of CellChorus.

"This is an opportunity to leverage artificial intelligence methods for advancing the life sciences," said Roysam. "We are especially excited about its applications to advancing cell-based immunotherapy to treat cancer and other diseases."

TIMING™ is a specialized tool for studying single cells over time. Because it is a video-array-based technology, it observes cell interactions and produces tens of thousands of videos. Analyzing these massive video arrays requires automated computer vision systems.

"By combining AI, microscale manufacturing, and advanced microscopy, the label-free TIMING platform will yield deep insight into cellular behaviors that directly impact human disease and new classes of therapeutics," said Rebecca Berdeaux, chief scientific officer at CellChorus and co-Principal Investigator on the grant. "The generous support of NCATS enables our development of computational tools that will ultimately integrate single-cell dynamic functional analysis of cell behavior with intracellular signaling events.

The goal of the grant, a Small Business Technology Transfer Fast-Track award, is to quantify the behavior of cells without the need to fluorescently stain them. Label-free analysis, or analysis without fluorescent dyes, allows scientists to watch cells in their natural state and gather important information about their movement, interactions and changes. It will also allow them to use selective fluorescent staining to observe new molecules of interest. This is useful in studying diseases like cancer or how cells react to treatments.

The label-free analysis is enabled by new artificial intelligence and machine learning models trained on tens of millions of images of cells and will be optimized for fast, high-throughput single-cell analysis by customers.

This grant is under Award Number 1R42TR005299. The content of this release is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Most Popular Now

AI Tool Helps Predict Relapse of Pediatr…

Artificial intelligence (AI) shows tremendous promise for analyzing vast medical imaging datasets and identifying patterns that may be missed by human observers. AI-assisted interpretation of brain scans may help improve...

Detecting Lung Cancer 4 Months Earlier a…

GPs may soon be able to identify patients with an increased risk of lung cancer up to 4 months earlier than is currently the case. The GP should be able...

Infectious Disease Surveillance Platform…

The Biothreats Emergence, Analysis and Communications Network (BEACON) leverages advanced artificial intelligence (AI), large language models (LLMs) and a network of globally based experts to rapidly collect, analyze, and disseminate...

Children's Health Ireland to Transf…

Healthcare teams responsible for paediatric care in Ireland are to save significant time in accessing important diagnostic imaging and reports, with the help of a new agreement with medical imaging...

NHS, Councils, and Housing could Share N…

A new technology partnership formally announced, could help NHS, local government, and housing organisations collaborate to create an unprecedented understanding of the risks and needs of people in their care...

AI-Powered Analysis of Stent Healing

Each year, more than three million people worldwide are treated with stents to open blocked blood vessels caused by heart disease. However, monitoring the healing process after implantation remains a...

Right Patient, Right Dose, Right Time

While artificial intelligence (AI) has shown promising potential, much of its use has remained theoretical or retrospective. Turning its potential into real-world healthcare outcomes, researchers at the Yong Loo Lin...

An AI Tool Grounded in Evidence-Based Me…

A powerful clinical artificial intelligence tool developed by University at Buffalo biomedical informatics researchers has demonstrated remarkable accuracy on all three parts of the United States Medical Licensing Exam (Step...

AXREM and BHTA Name Highland as 'Fu…

Hosted by trade associations AXREM and the British Healthcare Trades Association (BHTA), 'The Future of MedTech - Innovating for Tomorrow', will allow delegates to engage with speakers from the government...