American College of Radiology Releases Joint Statement on the Use of AI Tools in Radiology

The American College of Radiology® (ACR®), working in close collaboration with four other radiology societies from around the world, have issued a joint statement on the development and use of artificial intelligence (AI) tools in radiology. This groundbreaking joint statement is openly available in ACR's Journal of the American College of Radiology, published by Elsevier. It explores the potential challenges and ethical and safety concerns related to integrating this new technology into radiology practice.

"Developing, Purchasing, Implementing and Monitoring AI Tools in Radiology: Practical Considerations. A Multi-Society Statement from the ACR, CAR, ESR, RANZCR and RSNA" was drafted by representatives of the American College of Radiology, the Canadian Association of Radiologists, the European Society of Radiology, the Royal Australian and New Zealand College of Radiologists, and the Radiological Society of North America.

Bibb Allen, MD, FACR, ACR Data Science Institute Chief Medical Officer, emphasized, "Continuous AI monitoring that captures model performance, examination parameters, and patient demographics in data registries offers significant advantages, including being able to identify the causes of diminished performance in real time and the ability to provide developers with aggregated data for model improvement."

Christoph Wald, MD, PhD, MBA, FACR, Chair of ACR Commission on Informatics, reiterated, "AI in radiology should ultimately increase patient well-being, minimize harm, respect human rights, and ensure that the benefits and harms are distributed among stakeholders in an equitable way. Since AI heavily relies on data, ethical issues relating to the acquisition, use, storage, and disposal of data are central to patient safety and the appropriate use of AI."

AI carries the potential for unprecedented disruption in radiology with the possibility of both positive and negative consequences. The integration of AI in radiology could revolutionize healthcare practices by advancing diagnosis, quantification, and management of multiple medical conditions. However, with the expanding availability and capabilities of AI tools in radiology comes an increasing need to critically evaluate claims for AI’s utility and to differentiate safe product offerings from potentially harmful or fundamentally unhelpful ones.

Lead author Prof. Adrian P. Brady, MB BCh, FFRRCSI, FRCR, FRCPC, University College Cork, Ireland, former President and current Chair of the Board of Directors of the European Society of Radiology (ESR) explained, "This paper is critical in ensuring that radiologists can define, enhance, and safeguard the future of medical imaging. As AI becomes increasingly integrated into our field, it brings both tremendous potential and challenges. By addressing practical issues, ethical concerns, and safety considerations, we aim to guide the development and implementation of AI tools in radiology. This paper is not just a statement; it is a commitment to ensuring the responsible and effective use of AI for the betterment of patient care. It sets the stage for a new era in radiology, where innovation is balanced with ethical considerations, and patient outcomes remain our top priority."

Key points emphasize the necessity for increased monitoring of AI utility and safety, advocating for collaboration among developers, clinicians, purchasers, and regulators to navigate ethical concerns and ensure responsible AI integration into radiological practice. In addition, the statement provides valuable insights for stakeholders, offering guidelines on evaluating stability, safety, and autonomous functionality, making it an indispensable resource for the development and implementation of AI in radiology.

The authors stress that AI can fulfill its promise to advance patient well‑being if all steps from development to integration in healthcare are rigorously evaluated. This multi-society statement provides guidance to ensure that the practical issues that surround all stages of AI from conception to long-term integration in healthcare are clear, understood, and addressed, and that patient and societal safety and well-being are the primary drivers of all decisions.

Brady AP, Allen B, Chong J, Kotter E, Kottler N, Mongan J, Oakden-Rayner L, Pinto Dos Santos D, Tang A, Wald C, Slavotinek J.
Developing, Purchasing, Implementing and Monitoring AI Tools in Radiology: Practical Considerations. A Multi-Society Statement From the ACR, CAR, ESR, RANZCR & RSNA.
J Am Coll Radiol. 2024 Jan 23:S1546-1440(23)01020-7. doi: 10.1016/j.jacr.2023.12.005

Most Popular Now

New Computational Model of Real Neurons …

Nearly all the neural networks that power modern artificial intelligence (AI) tools such as ChatGPT are based on a 1960s-era computational model of a living neuron. A new model developed...

Meet CARMEN, a Robot that Helps People w…

Meet CARMEN, short for Cognitively Assistive Robot for Motivation and Neurorehabilitation - a small, tabletop robot designed to help people with mild cognitive impairment (MCI) learn skills to improve memory...

AI Matches Protein Interaction Partners

Proteins are the building blocks of life, involved in virtually every biological process. Understanding how proteins interact with each other is crucial for deciphering the complexities of cellular functions, and...

Mobile Phone Data Helps Track Pathogen S…

A new way to map the spread and evolution of pathogens, and their responses to vaccines and antibiotics, will provide key insights to help predict and prevent future outbreaks. The...

AI Model to Improve Patient Response to …

A new artificial intelligence (AI) tool that can help to select the most suitable treatment for cancer patients has been developed by researchers at The Australian National University (ANU). DeepPT, developed...

Can AI Tell you if You Have Osteoporosis…

Osteoporosis is so difficult to detect in early stage it’s called the "silent disease." What if artificial intelligence could help predict a patient’s chances of having the bone-loss disease before...

Study Reveals Why AI Models that Analyze…

Artificial intelligence (AI) models often play a role in medical diagnoses, especially when it comes to analyzing images such as X-rays. However, studies have found that these models don’t always...

Think You're Funny? ChatGPT might b…

A study comparing jokes by people versus those told by ChatGPT shows that humans need to work on their material. The research team behind the study published on Wednesday, July 3...

Innovative, Highly Accurate AI Model can…

If there is one medical exam that everyone in the world has taken, it's a chest x-ray. Clinicians can use radiographs to tell if someone has tuberculosis, lung cancer, or...

New AI Approach Optimizes Antibody Drugs

Proteins have evolved to excel at everything from contracting muscles to digesting food to recognizing viruses. To engineer better proteins, including antibodies, scientists often iteratively mutate the amino acids -...

AI Speeds Up Heart Scans, Saving Doctors…

Researchers have developed a groundbreaking method for analysing heart MRI scans with the help of artificial intelligence (AI), which could save valuable NHS time and resources, as well as improve...

Young People Believe that AI is a Valuab…

Children and young people are generally positive about artificial intelligence (AI) and think it should be used in modern healthcare, finds the first-of-its-kind survey led by UCL and Great Ormond...