American College of Radiology Releases Joint Statement on the Use of AI Tools in Radiology

The American College of Radiology® (ACR®), working in close collaboration with four other radiology societies from around the world, have issued a joint statement on the development and use of artificial intelligence (AI) tools in radiology. This groundbreaking joint statement is openly available in ACR's Journal of the American College of Radiology, published by Elsevier. It explores the potential challenges and ethical and safety concerns related to integrating this new technology into radiology practice.

"Developing, Purchasing, Implementing and Monitoring AI Tools in Radiology: Practical Considerations. A Multi-Society Statement from the ACR, CAR, ESR, RANZCR and RSNA" was drafted by representatives of the American College of Radiology, the Canadian Association of Radiologists, the European Society of Radiology, the Royal Australian and New Zealand College of Radiologists, and the Radiological Society of North America.

Bibb Allen, MD, FACR, ACR Data Science Institute Chief Medical Officer, emphasized, "Continuous AI monitoring that captures model performance, examination parameters, and patient demographics in data registries offers significant advantages, including being able to identify the causes of diminished performance in real time and the ability to provide developers with aggregated data for model improvement."

Christoph Wald, MD, PhD, MBA, FACR, Chair of ACR Commission on Informatics, reiterated, "AI in radiology should ultimately increase patient well-being, minimize harm, respect human rights, and ensure that the benefits and harms are distributed among stakeholders in an equitable way. Since AI heavily relies on data, ethical issues relating to the acquisition, use, storage, and disposal of data are central to patient safety and the appropriate use of AI."

AI carries the potential for unprecedented disruption in radiology with the possibility of both positive and negative consequences. The integration of AI in radiology could revolutionize healthcare practices by advancing diagnosis, quantification, and management of multiple medical conditions. However, with the expanding availability and capabilities of AI tools in radiology comes an increasing need to critically evaluate claims for AI’s utility and to differentiate safe product offerings from potentially harmful or fundamentally unhelpful ones.

Lead author Prof. Adrian P. Brady, MB BCh, FFRRCSI, FRCR, FRCPC, University College Cork, Ireland, former President and current Chair of the Board of Directors of the European Society of Radiology (ESR) explained, "This paper is critical in ensuring that radiologists can define, enhance, and safeguard the future of medical imaging. As AI becomes increasingly integrated into our field, it brings both tremendous potential and challenges. By addressing practical issues, ethical concerns, and safety considerations, we aim to guide the development and implementation of AI tools in radiology. This paper is not just a statement; it is a commitment to ensuring the responsible and effective use of AI for the betterment of patient care. It sets the stage for a new era in radiology, where innovation is balanced with ethical considerations, and patient outcomes remain our top priority."

Key points emphasize the necessity for increased monitoring of AI utility and safety, advocating for collaboration among developers, clinicians, purchasers, and regulators to navigate ethical concerns and ensure responsible AI integration into radiological practice. In addition, the statement provides valuable insights for stakeholders, offering guidelines on evaluating stability, safety, and autonomous functionality, making it an indispensable resource for the development and implementation of AI in radiology.

The authors stress that AI can fulfill its promise to advance patient well‑being if all steps from development to integration in healthcare are rigorously evaluated. This multi-society statement provides guidance to ensure that the practical issues that surround all stages of AI from conception to long-term integration in healthcare are clear, understood, and addressed, and that patient and societal safety and well-being are the primary drivers of all decisions.

Brady AP, Allen B, Chong J, Kotter E, Kottler N, Mongan J, Oakden-Rayner L, Pinto Dos Santos D, Tang A, Wald C, Slavotinek J.
Developing, Purchasing, Implementing and Monitoring AI Tools in Radiology: Practical Considerations. A Multi-Society Statement From the ACR, CAR, ESR, RANZCR & RSNA.
J Am Coll Radiol. 2024 Jan 23:S1546-1440(23)01020-7. doi: 10.1016/j.jacr.2023.12.005

Most Popular Now

Open Medical Works with Moray's Dig…

Open Medical is working with the Digital Health & Care Innovation Centre’s Rural Centre of Excellence on a referral management plan, as part of a research and development scheme to...

Generative AI on Track to Shape the Futu…

Using advanced artificial intelligence (AI), researchers have developed a novel method to make drug development faster and more efficient. In a new paper, Xia Ning, lead author of the study and...

Reorganisation, Consolidation, and Cuts:…

NHS England has been downsized and abolished. Integrated care boards have been told to change function, consolidate, and deliver savings. Trusts are planning big cuts. The Highland Marketing advisory board...

Personalized Breast Cancer Prevention No…

A new telemedicine service for personalised breast cancer prevention has launched at preventcancer.co.uk. It allows women aged 30 to 75 across the UK to understand their risk of developing breast...

New App may Help Caregivers of People Ge…

A new study by investigators from Mass General Brigham showed that a new app they created can help improve the quality of life for caregivers of patients undergoing bone marrow...

An App to Detect Heart Attacks and Strok…

A potentially lifesaving new smartphone app can help people determine if they are suffering heart attacks or strokes and should seek medical attention, a clinical study suggests. The ECHAS app (Emergency...

A Machine Learning Tool for Diagnosing, …

Scientists aiming to advance cancer diagnostics have developed a machine learning tool that is able to identify metabolism-related molecular profile differences between patients with colorectal cancer and healthy people. The analysis...

Fine-Tuned LLMs Boost Error Detection in…

A type of artificial intelligence (AI) called fine-tuned large language models (LLMs) greatly enhances error detection in radiology reports, according to a new study published in Radiology, a journal of...

DeepSeek-R1 Offers Promising Potential t…

A joint research team from The Hong Kong University of Science and Technology and The Hong Kong University of Science and Technology (Guangzhou) has published a perspective article in MedComm...

Deep Learning can Predict Lung Cancer Ri…

A deep learning model was able to predict future lung cancer risk from a single low-dose chest CT scan, according to new research published at the ATS 2025 International Conference...