Amsterdam UMC to Use AI to Increase the Accessibility of Medical Imaging Technology

The demand for acquiring and interpreting medical images is increasing faster than number of medical experts required to operate the medical imaging device and interpret their output. This is leading to an increase in the expert workload and extending waiting lists. An Amsterdam UMC-led consortium wants to tackle this problem by making imaging technology more accessible. With the help of artificial intelligence, they want to enable less specialized experts to acquire and analyse medical images. To support them in this goal, the Dutch Research Council (NWO) has awarded the AI4AI project a grant of 6.1 million euros.

Medical images are mainly captured in the hospitals, using expensive imaging devices such as CT or MRI-scanners. Specialists are required operate these devices as well as analyse their output. "Our aim is to use artificial intelligence to develop technologies that allow the use of affordable and/or portable devices such as ultrasound and ultra-low-field MRI," says Amsterdam UMC Professor of Artificial Intelligence and Medical Imaging Ivana Išgum. Išgum is the coordinator of the national consortium implementing the AI4AI project. "Also, our aim is to allow the use of imaging devices by e.g. general practitioners, sonographers and specialist nurses to reduce the need for very highly specialized experts."

"AI technology can reduce the need for highly specialized experts for operation of medical devices and analysis of medical images, which has the potential to greatly reduce the pressure on personnel and the associated costs" says Išgum, who together with Professor Clarisa Sánchez, leads the interfaculty research group qurAI that focuses on the responsible development of AI in healthcare.

The increased demand for medical images means that the workload for radiologists and other specialists is increasing enormously. This can lead to burnout symptoms, which in turn affects both the sustainability of care and waiting lists. This means that patients might need to travel further to receive the necessary care. "With this project, we want to contribute to bringing medical imaging closer to patients' living environment and make it more accessible for patients. In addition, hospital care in developing countries may not always be accessible to everyone. There may also be fewer highly skilled experts available. We also hope to contribute to more accessible healthcare for people in these countries," says Išgum.

Amsterdam UMC Radiologist Nils Planken adds that many fellow radiologists and other medical specialists welcome the support of technology. "AI technology that can support the creation, interpretation and reporting of medical imaging studies has the potential to shorten waiting lists and reduce workload and perhaps also improve quality. The correct use of diagnostics outside the hospital has the potential to prevent patients from being sent to the hospital, or to sending patients to the hospital in an even more targeted way," says Planken.

AI4AI focuses on many diseases and specialties, such as analysis of stroke and brain tumours, visualization and interpretation of organ tissue perfusion in surgery, quantification of foetal biomarkers to spot abnormalities in the pregnancy, identification of patients requiring invasive coronary artery treatment, identification of patients with heart disease, improvement of the workflow in image-guided radiotherapy, referrals for urgent care, screening and triage of threatening visual disorders, selection of patients eligible for immunotherapy, and improvement of imaging workflow to assess orthopaedic implants.

Most Popular Now

Stepping Hill Hospital Announced as SPAR…

Stepping Hill Hospital, part of Stockport NHS Foundation Trust, has replaced its bedside units with state-of-the art devices running a full range of information, engagement, communications and productivity apps, to...

DMEA 2025: Digital Health Worldwide in B…

8 - 10 April 2025, Berlin, Germany. From the AI Act, to the potential of the European Health Data Space, to the power of patient data in Scandinavia - DMEA 2025...

Is AI in Medicine Playing Fair?

As artificial intelligence (AI) rapidly integrates into health care, a new study by researchers at the Icahn School of Medicine at Mount Sinai reveals that all generative AI models may...

Generative AI's Diagnostic Capabili…

The use of generative AI for diagnostics has attracted attention in the medical field and many research papers have been published on this topic. However, because the evaluation criteria were...

New System for the Early Detection of Au…

A team from the Human-Tech Institute-Universitat Politècnica de València has developed a new system for the early detection of Autism Spectrum Disorder (ASD) using virtual reality and artificial intelligence. The...

Diagnoses and Treatment Recommendations …

A new study led by Prof. Dan Zeltzer, a digital health expert from the Berglas School of Economics at Tel Aviv University, compared the quality of diagnostic and treatment recommendations...

AI Tool can Track Effectiveness of Multi…

A new artificial intelligence (AI) tool that can help interpret and assess how well treatments are working for patients with multiple sclerosis (MS) has been developed by UCL researchers. AI uses...

Surrey and Sussex Healthcare NHS Trust g…

Surrey and Sussex Healthcare NHS Trust has marked an important milestone in connecting busy radiologists across large parts of South East England, following the successful go live of Sectra's enterprise...

DMEA 2025 Ends with Record Attendance an…

8 - 10 April 2025, Berlin, Germany. DMEA 2025 came to a successful close with record attendance and an impressive program. 20,500 participants attended Europe's leading digital health event over the...

Dr Jason Broch Joins the Highland Market…

The Highland Marketing advisory board has welcomed a new member - Dr Jason Broch, a GP and director with a strong track record in the NHS and IT-enabled transformation. Dr Broch...

AI-Driven Smart Devices to Transform Hea…

AI-powered, internet-connected medical devices have the potential to revolutionise healthcare by enabling early disease detection, real-time patient monitoring, and personalised treatments, a new study suggests. They are already saving lives...

Multi-Resistance in Bacteria Predicted b…

An AI model trained on large amounts of genetic data can predict whether bacteria will become antibiotic-resistant. The new study shows that antibiotic resistance is more easily transmitted between genetically...