Artificial Intelligence in Medicine Regulation

EMAThe International Coalition of Medicines Regulatory Authorities (ICMRA) sets out recommendations to help regulators to address the challenges that the use of artificial intelligence (AI) poses for global medicines regulation, in a report published today.

AI includes various technologies (such as statistical models, diverse algorithms and self-modifying systems) that are increasingly being applied across all stages of a medicine's lifecycle: from preclinical development, to clinical trial data recording and analysis, to pharmacovigilance and clinical use optimisation. This range of applications brings with it regulatory challenges, including the transparency of algorithms and their meaning, as well as the risks of AI failures and the wider impact these would have on AI uptake in medicine development and patients' health.

The report identifies key issues linked to the regulation of future therapies using AI and makes specific recommendations for regulators and stakeholders involved in medicine development to foster the uptake of AI. Some of the main findings and recommendations include:

  • Regulators may need to apply a risk-based approach to assessing and regulating AI, which could be informed through exchange and collaboration in ICMRA;
  • Sponsors, developers and pharmaceutical companies should establish strengthened governance structures to oversee algorithms and AI deployments that are closely linked to the benefit/risk of a medicinal product;
  • Regulatory guidelines for AI development, validation and use with medicinal products should be developed in areas such as data provenance, reliability, transparency and understandability, pharmacovigilance, and real-world monitoring of patient functioning.

The report is based on a horizon-scanning exercise in AI, conducted by the ICMRA Informal Network for Innovation working group and led by EMA. The goal of this network is to identify challenging topics for medicine regulators, to explore the suitability of existing regulatory frameworks and to develop recommendations to adapt regulatory systems in order to facilitate safe and timely access to innovative medicines.

The implementation of the recommendations will be discussed by ICMRA members in the coming months.

Report download:
ICMRA Informal Innovation Network Horizon Scanning Assessment Report - Artificial Intelligence

Most Popular Now

AI Catches One-Third of Interval Breast …

An AI algorithm for breast cancer screening has potential to enhance the performance of digital breast tomosynthesis (DBT), reducing interval cancers by up to one-third, according to a study published...

Great plan: Now We need to Get Real abou…

The government's big plan for the 10 Year Health Plan for the NHS laid out a big role for delivery. However, the Highland Marketing advisory board felt the missing implementation...

Researchers Create 'Virtual Scienti…

There may be a new artificial intelligence-driven tool to turbocharge scientific discovery: virtual labs. Modeled after a well-established Stanford School of Medicine research group, the virtual lab is complete with an...

From WebMD to AI Chatbots: How Innovatio…

A new research article published in the Journal of Participatory Medicine unveils how successive waves of digital technology innovation have empowered patients, fostering a more collaborative and responsive health care...

New AI Tool Accelerates mRNA-Based Treat…

A new artificial intelligence (AI) model can improve the process of drug and vaccine discovery by predicting how efficiently specific mRNA sequences will produce proteins, both generally and in various...

AI also Assesses Dutch Mammograms Better…

AI is detecting tumors more often and earlier in the Dutch breast cancer screening program. Those tumors can then be treated at an earlier stage. This has been demonstrated by...

RSNA AI Challenge Models can Independent…

Algorithms submitted for an AI Challenge hosted by the Radiological Society of North America (RSNA) have shown excellent performance for detecting breast cancers on mammography images, increasing screening sensitivity while...

AI could Help Emergency Rooms Predict Ad…

Artificial intelligence (AI) can help emergency department (ED) teams better anticipate which patients will need hospital admission, hours earlier than is currently possible, according to a multi-hospital study by the...

Head-to-Head Against AI, Pharmacy Studen…

Students pursuing a Doctor of Pharmacy degree routinely take - and pass - rigorous exams to prove competency in several areas. Can ChatGPT accurately answer the same questions? A new...

NHS Active 10 Walking Tracker Users are …

Users of the NHS Active 10 app, designed to encourage people to become more active, immediately increased their amount of brisk and non-brisk walking upon using the app, according to...

New AI Tool Illuminates "Dark Side…

Proteins sustain life as we know it, serving many important structural and functional roles throughout the body. But these large molecules have cast a long shadow over a smaller subclass...

Deep Learning-Based Model Enables Fast a…

Stroke is the second leading cause of death globally. Ischemic stroke, strongly linked to atherosclerotic plaques, requires accurate plaque and vessel wall segmentation and quantification for definitive diagnosis. However, conventional...