Personalised and Powerful: UK to Lead Next-Generation Radiotherapy Research

The UK will be transformed into a global hub for radiotherapy research, pioneering the use of the latest techniques such as FLASH radiotherapy and artificial intelligence, with a new £56 million research network announced by Cancer Research UK today.

The network, Cancer Research UK RadNet, is the charity's largest ever investment in radiotherapy research and will accelerate the development of advanced radiotherapy techniques, challenging the boundaries of this mainstay treatment through world-first exploratory projects.

It will unite seven centres of excellence across the country: the Universities of Cambridge, Glasgow, Leeds, Manchester and Oxford, the Cancer Research UK City of London Centre (a partnership between UCL, Queen Mary University of London, King's College London the Francis Crick Institute) and The Institute of Cancer Research, London in partnership with The Royal Marsden NHS Foundation Trust.

Michelle Mitchell, chief executive of Cancer Research UK, said: "Radiotherapy is a cornerstone of cancer medicine, with around 3 in 10 patients receiving it as part of their primary treatment. The launch of our network marks a new era of radiotherapy research in the UK. Scientists will combine advances in our understanding of cancer biology with cutting-edge technology to make this treatment more precise and effective than ever before."

Cancer Research UK supported some of the earliest research into radiotherapy, pioneering the use of radium to treat cancer in the 1920s. Modern radiotherapy works by targeting tumours with x-ray radiation, killing cancer cells by irreversibly damaging their DNA. Today, over 130,000 patients are treated with radiotherapy on the NHS every year.

Cancer Research UK RadNet aims to improve cancer survival by optimising and personalising radiotherapy. The centres will spearhead the development of new techniques for delivering radiotherapy and investigate new radiotherapy-drug combinations, including immunotherapies. Scientists will also focus on reducing the long-term side effects associated with this treatment, improving patients' quality of life during and after treatment.

The innovative research that Cancer Research UK RadNet will deliver includes:

  • Exploring FLASH radiotherapy, where pulses of high-dose of radiation are delivered in a fraction of a second. Research so far suggests that FLASH has the potential to cause less damage to the healthy tissue surrounding the tumour than traditional radiotherapy, where tissues are exposed to lower doses of radiation over a longer period, often resulting in long-term side effects.
  • Further investigation into proton beam therapy - an innovative type of radiotherapy that uses beams of protons, instead of photons, to destroy cancer. This key difference means that when the heavier protons reach their carefully mapped out target, they come to a halt, delivering a powerful burst of radiation precisely where it's needed. The Christie NHS Foundation Trust, in Manchester, is the first NHS hospital to provide high-energy proton beam therapy, with another centre to follow at University College London Hospitals NHS Foundation Trust next year. Cancer Research UK RadNet will support researchers across the country to optimise this new technology and maximise patient benefit.
  • Investigating ways to overcome hypoxia - low oxygen levels within tumours, resulting from rapid cancer growth that blood vessels can't keep up with. Hypoxic tumours are far less susceptible to radiotherapy, as radiation interacts with oxygen to produce volatile molecules that help to destroy cancer. Scientists will develop better ways to identify hypoxic tumours and new treatments to oxygenate them, making radiotherapy much more powerful.
  • Investigating why some cancers come back after radiotherapy by studying the role of cancer stem cells. These cells are remarkably resistant to radiation, and just a few stem cells remaining after treatment can cause a patient's cancer to come back. For some patients, targeting stem cells could be the key to unlocking radiotherapy's full potential.
  • Developing and testing drugs that could be used in combination with radiotherapy. This will include immunotherapies - treatments that exploit the power of the body's immune system to fight cancer. They will also research how tumours are able to repair DNA damage caused by radiotherapy and use the latest gene-editing technology to develop drugs that interfere with this process.
  • Harnessing the power of artificial intelligence. Cancer Research UK RadNet researchers will use this technology to design personalised treatment plans guided by data from patients' scans. This could improve the accuracy with which doctors deliver radiotherapy and provide new treatment options for patients whose tumours were once thought too risky to target with radiation.

Cancer Research UK RadNet will be a beacon, attracting leading researchers from across the globe to boost radiotherapy research capacity in the UK. £13 million has been allocated to form new research groups and fund additional PhD students in Manchester, London and Cambridge, ensuring the UK's radiotherapy research community continues to thrive. The network will promote collaboration between diverse scientific fields, with a share of £4 million available to all centres for joint research projects, conferences and secondments between locations.

Dr Adrian Crellin, Cancer Research UK Trustee and Former Vice-President of the Royal College of Radiologists, said: "I've seen first-hand how successful radiotherapy can be for patients that I treat, but it's been frustrating to see the UK lagging behind other countries when it comes to prioritising research into this vital treatment. Cancer Research UK's investment will overhaul radiotherapy research in the UK to bring the next generation of treatments to patients sooner."

About Cancer Research UK

  • Cancer Research UK is the world's leading cancer charity dedicated to saving lives through research.
  • Cancer Research UK's pioneering work into the prevention, diagnosis and treatment of cancer has helped save millions of lives.
  • Cancer Research UK receives no funding from the UK government for its life-saving research. Every step it makes towards beating cancer relies on vital donations from the public.
  • Cancer Research UK has been at the heart of the progress that has already seen survival in the UK double in the last 40 years.
  • Today, 2 in 4 people survive their cancer for at least 10 years. Cancer Research UK's ambition is to accelerate progress so that by 2034, 3 in 4 people will survive their cancer for at least 10 years.
  • Cancer Research UK supports research into all aspects of cancer through the work of over 4,000 scientists, doctors and nurses.
  • Together with its partners and supporters, Cancer Research UK's vision is to bring forward the day when all cancers are cured.

Most Popular Now

Philips Foundation 2024 Annual Report: E…

Marking its tenth anniversary, Philips Foundation released its 2024 Annual Report, highlighting a year in which the Philips Foundation helped provide access to quality healthcare for 46.5 million people around...

Giving Doctors an AI-Powered Head Start …

Detection of melanoma and a range of other skin diseases will be faster and more accurate with a new artificial intelligence (AI) powered tool that analyses multiple imaging types simultaneously...

Scientists Argue for More FDA Oversight …

An agile, transparent, and ethics-driven oversight system is needed for the U.S. Food and Drug Administration (FDA) to balance innovation with patient safety when it comes to artificial intelligence-driven medical...

New AI Transforms Radiology with Speed, …

A first-of-its-kind generative AI system, developed in-house at Northwestern Medicine, is revolutionizing radiology - boosting productivity, identifying life-threatening conditions in milliseconds and offering a breakthrough solution to the global radiologist...

AI Agents for Oncology

Clinical decision-making in oncology is challenging and requires the analysis of various data types - from medical imaging and genetic information to patient records and treatment guidelines. To effectively support...

Start-ups in the Spotlight at MEDICA 202…

17 - 20 November 2025, Düsseldorf, Germany. MEDICA, the leading international trade fair and platform for healthcare innovations, will once again confirm its position as the world's number one hotspot for...

AI Detects Hidden Heart Disease Using Ex…

Mass General Brigham researchers have developed a new AI tool in collaboration with the United States Department of Veterans Affairs (VA) to probe through previously collected CT scans and identify...

AI Medical Receptionist Modernizing Doct…

A virtual medical receptionist named "Cassie," developed through research at Texas A&M University, is transforming the way patients interact with health care providers. Cassie is a digital-human assistant created by Humanate...

MHP-Net: A Revolutionary AI Model for Ac…

Liver cancer is the sixth most common cancer globally and a leading cause of cancer-related deaths. Accurate segmentation of liver tumors is a crucial step for the management of the...

Highland Marketing Announced as Official…

Highland Marketing has been named, for the second year running, the official communications partner for HETT Show 2025, the UK's leading digital health conference and exhibition. Taking place 7-8 October...

AI Tool Set to Transform Characterisatio…

A multinational team of researchers, co-led by the Garvan Institute of Medical Research, has developed and tested a new AI tool to better characterise the diversity of individual cells within...

Human-AI Collectives Make the Most Accur…

Diagnostic errors are among the most serious problems in everyday medical practice. AI systems - especially large language models (LLMs) like ChatGPT-4, Gemini, or Claude 3 - offer new ways...