Augmented Reality System Lets Doctors See under Patients' Skin without the Scalpel

New technology is bringing the power of augmented reality into clinical practice. The system, called ProjectDR, allows medical images such as CT scans and MRI data to be displayed directly on a patient's body in a way that moves as the patient does.

"We wanted to create a system that would show clinicians a patient's internal anatomy within the context of the body," explained Ian Watts, a computing science graduate student and the developer of ProjectDR.

The technology includes a motion-tracking system using infrared cameras and markers on the patient's body, as well as a projector to display the images. But the really difficult part, Watts explained, is having the image track properly on the patient's body even as they shift and move. The solution: custom software written by Watts that gets all of the components working together.

Vast applications

"There are lots of applications for this technology, including in teaching, physiotherapy, laparoscopic surgery and even surgical planning," said Watts, who developed the technology with fellow graduate student Michael Fiest.

ProjectDR also has the capacity to present segmented images - for example, only the lungs or only the blood vessels - depending on what a clinician is interested in seeing.

For now, Watts is working on refining ProjectDR to improve the system's automatic calibration and to add components such as depth sensors. The next steps are testing the program's viability in a clinical setting, explained Pierre Boulanger, professor in the Department of Computing Science.

Next steps

"Soon, we'll deploy ProjectDR in an operating room in a surgical simulation laboratory to test the pros and cons in real-life surgical applications," said Boulanger. "We are also doing pilot studies to test the usability of the system for teaching chiropractic and physical therapy procedures." added Greg Kawchuk, a co-supervisor on the project from the Faculty of Rehabilitation Medicine. Once these pilot studies are complete, the research team expects the deployment of the system in real surgical pilot studies will quickly follow.

Watts is co-supervised by Boulanger, Cisco Chair in Healthcare Solutions and professor in the Faculty of Science, and by Kawchuk, professor in the Faculty of Rehabilitation Medicine.

ProjectDR was presented last November at the Virtual Reality Software and Technology Symposium in Gothenburg, Sweden.

Most Popular Now

AI Tools Help Predict Severe Asthma Risk…

Mayo Clinic researchers have developed artificial intelligence (AI) tools that help identify which children with asthma face the highest risk of serious asthma exacerbation and acute respiratory infections. The study...

ChatGPT 4o Therapeutic Chatbot 'Ama…

One of the first randomized controlled trials assessing the effectiveness of a large language model (LLM) chatbot 'Amanda' for relationship support shows that a single session of chatbot therapy...

AI Distinguishes Glioblastoma from Look-…

A Harvard Medical School–led research team has developed an AI tool that can reliably tell apart two look-alike cancers found in the brain but with different origins, behaviors, and treatments. The...

Overcoming the AI Applicability Crisis a…

Opinion Article by Harry Lykostratis, Chief Executive, Open Medical. The government’s 10 Year Health Plan makes a lot of the potential of AI-software to support clinical decision making, improve productivity, and...

Smart Device Uses AI and Bioelectronics …

As a wound heals, it goes through several stages: clotting to stop bleeding, immune system response, scabbing, and scarring. A wearable device called "a-Heal," designed by engineers at the University...

Dartford and Gravesham Implements Clinis…

Dartford and Gravesham NHS Trust has taken a significant step towards a more digital future by rolling out electronic test ordering using Clinisys ICE. The trust deployed the order communications...

AI Body Composition Measurements can Pre…

Adiposity - or the accumulation of excess fat in the body - is a known driver of cardiometabolic diseases such as heart disease, stroke, type 2 diabetes, and kidney disease...