New, Robust and Inexpensive Technique for Protein Analysis in Tissues

A new technique to study proteins, which does not require advanced equipment, specialized labs or expensive reagents, has been developed at Uppsala University, Sweden. The technique could be further developed to be used in point of care devices, for instance for diagnostic purposes. The possibility to identify and localize proteins in tissues is essential for understanding disease mechanisms and for diagnostics. However, today very advanced instruments are often needed to study proteins and how they interact with each other. An example is the microscopy technique that was awarded last year's Nobel Prize in chemistry; super resolution fluorescence microscopy.

Such equipment is expensive to purchase and often requires special training to handle. In order to use protein detection for diagnostic purposes, e.g. in a clinic, new, less complicated methods to study proteins are needed. Such methods should be temperature insensitive and not require expensive instruments, costly reagents or specially trained staff.

In the most recent issue of the journal Nature Communications the researchers present a technique that could be used by for instance hospital staff, to detect relevant proteins. The technique is based on the binding of antibodies, either to two sites on the same protein or to two proteins that are localized very close to each other. The antibodies have been linked to DNA strands that will attach to each other if they are close enough. When this happens a chain reaction will start in which increasing numbers of DNA strands are attached. To each DNA strand a fluorescent substance has been linked, which will emit light when it is irradiated with light of a certain wavelength.

"When the chain reaction has run for a while enough fluorescent molecules have been incorporated to allow us to observe them as very bright dots in a microscope, reflecting the presence of a protein of interest. The more dots there more protein," says Ola Söderberg, who has developed the technique together with Masood Kamali-Mogaddam and their research teams.

The chain reaction does not include any enzymes, which means that it can take place at room temperature. The microscopes needed to study the bright dots are relatively simple and commonly available in hospital and research labs. Since two antibodies are bound in the first step "false" signals can be avoided, making the reaction very specific for the studied protein.

"All this implies that our technique can be used as a robust and inexpensive method to localize proteins in tissues. We hope that it soon can be used both for clinical applications and for research purposes," says Ola Söderberg.

The technique has been developed in collaboration with researchers in Uppsala, Scotland and Austria. The results have been published online in the journal Nature Communications.

Reference: Proximity Dependent Initiation of Hybridization Chain Reaction, Nature Communications, DOI: 10.1038/ncomms8294

Science for Life Laboratory (SciLifeLab) is a national centre for molecular biosciences with the focus on health and environmental research. The centre combines advanced technical know-how and state-of-the art equipment with a broad knowledge of translational medicine and molecular bioscience.

Uppsala University - quality, knowledge, and creativity since 1477 World-class research and outstanding education of global benefit to society, business, and culture. Uppsala University is one of northern Europe's highest ranked academic institutions.

Most Popular Now

AI Catches One-Third of Interval Breast …

An AI algorithm for breast cancer screening has potential to enhance the performance of digital breast tomosynthesis (DBT), reducing interval cancers by up to one-third, according to a study published...

Great plan: Now We need to Get Real abou…

The government's big plan for the 10 Year Health Plan for the NHS laid out a big role for delivery. However, the Highland Marketing advisory board felt the missing implementation...

Researchers Create 'Virtual Scienti…

There may be a new artificial intelligence-driven tool to turbocharge scientific discovery: virtual labs. Modeled after a well-established Stanford School of Medicine research group, the virtual lab is complete with an...

From WebMD to AI Chatbots: How Innovatio…

A new research article published in the Journal of Participatory Medicine unveils how successive waves of digital technology innovation have empowered patients, fostering a more collaborative and responsive health care...

New AI Tool Accelerates mRNA-Based Treat…

A new artificial intelligence (AI) model can improve the process of drug and vaccine discovery by predicting how efficiently specific mRNA sequences will produce proteins, both generally and in various...

AI also Assesses Dutch Mammograms Better…

AI is detecting tumors more often and earlier in the Dutch breast cancer screening program. Those tumors can then be treated at an earlier stage. This has been demonstrated by...

RSNA AI Challenge Models can Independent…

Algorithms submitted for an AI Challenge hosted by the Radiological Society of North America (RSNA) have shown excellent performance for detecting breast cancers on mammography images, increasing screening sensitivity while...

AI could Help Emergency Rooms Predict Ad…

Artificial intelligence (AI) can help emergency department (ED) teams better anticipate which patients will need hospital admission, hours earlier than is currently possible, according to a multi-hospital study by the...

Head-to-Head Against AI, Pharmacy Studen…

Students pursuing a Doctor of Pharmacy degree routinely take - and pass - rigorous exams to prove competency in several areas. Can ChatGPT accurately answer the same questions? A new...

NHS Active 10 Walking Tracker Users are …

Users of the NHS Active 10 app, designed to encourage people to become more active, immediately increased their amount of brisk and non-brisk walking upon using the app, according to...

New AI Tool Illuminates "Dark Side…

Proteins sustain life as we know it, serving many important structural and functional roles throughout the body. But these large molecules have cast a long shadow over a smaller subclass...

The Human Touch of Doctors will Still be…

AI-based medicine will revolutionise care including for Alzheimer’s and diabetes, predicts a technology expert, but it must be accessible to all patients. Healing with Artificial Intelligence, written by technology expert Daniele...