New, Robust and Inexpensive Technique for Protein Analysis in Tissues

A new technique to study proteins, which does not require advanced equipment, specialized labs or expensive reagents, has been developed at Uppsala University, Sweden. The technique could be further developed to be used in point of care devices, for instance for diagnostic purposes. The possibility to identify and localize proteins in tissues is essential for understanding disease mechanisms and for diagnostics. However, today very advanced instruments are often needed to study proteins and how they interact with each other. An example is the microscopy technique that was awarded last year's Nobel Prize in chemistry; super resolution fluorescence microscopy.

Such equipment is expensive to purchase and often requires special training to handle. In order to use protein detection for diagnostic purposes, e.g. in a clinic, new, less complicated methods to study proteins are needed. Such methods should be temperature insensitive and not require expensive instruments, costly reagents or specially trained staff.

In the most recent issue of the journal Nature Communications the researchers present a technique that could be used by for instance hospital staff, to detect relevant proteins. The technique is based on the binding of antibodies, either to two sites on the same protein or to two proteins that are localized very close to each other. The antibodies have been linked to DNA strands that will attach to each other if they are close enough. When this happens a chain reaction will start in which increasing numbers of DNA strands are attached. To each DNA strand a fluorescent substance has been linked, which will emit light when it is irradiated with light of a certain wavelength.

"When the chain reaction has run for a while enough fluorescent molecules have been incorporated to allow us to observe them as very bright dots in a microscope, reflecting the presence of a protein of interest. The more dots there more protein," says Ola Söderberg, who has developed the technique together with Masood Kamali-Mogaddam and their research teams.

The chain reaction does not include any enzymes, which means that it can take place at room temperature. The microscopes needed to study the bright dots are relatively simple and commonly available in hospital and research labs. Since two antibodies are bound in the first step "false" signals can be avoided, making the reaction very specific for the studied protein.

"All this implies that our technique can be used as a robust and inexpensive method to localize proteins in tissues. We hope that it soon can be used both for clinical applications and for research purposes," says Ola Söderberg.

The technique has been developed in collaboration with researchers in Uppsala, Scotland and Austria. The results have been published online in the journal Nature Communications.

Reference: Proximity Dependent Initiation of Hybridization Chain Reaction, Nature Communications, DOI: 10.1038/ncomms8294

Science for Life Laboratory (SciLifeLab) is a national centre for molecular biosciences with the focus on health and environmental research. The centre combines advanced technical know-how and state-of-the art equipment with a broad knowledge of translational medicine and molecular bioscience.

Uppsala University - quality, knowledge, and creativity since 1477 World-class research and outstanding education of global benefit to society, business, and culture. Uppsala University is one of northern Europe's highest ranked academic institutions.

Most Popular Now

Stepping Hill Hospital Announced as SPAR…

Stepping Hill Hospital, part of Stockport NHS Foundation Trust, has replaced its bedside units with state-of-the art devices running a full range of information, engagement, communications and productivity apps, to...

DMEA 2025: Digital Health Worldwide in B…

8 - 10 April 2025, Berlin, Germany. From the AI Act, to the potential of the European Health Data Space, to the power of patient data in Scandinavia - DMEA 2025...

Is AI in Medicine Playing Fair?

As artificial intelligence (AI) rapidly integrates into health care, a new study by researchers at the Icahn School of Medicine at Mount Sinai reveals that all generative AI models may...

New System for the Early Detection of Au…

A team from the Human-Tech Institute-Universitat Politècnica de València has developed a new system for the early detection of Autism Spectrum Disorder (ASD) using virtual reality and artificial intelligence. The...

Generative AI's Diagnostic Capabili…

The use of generative AI for diagnostics has attracted attention in the medical field and many research papers have been published on this topic. However, because the evaluation criteria were...

Diagnoses and Treatment Recommendations …

A new study led by Prof. Dan Zeltzer, a digital health expert from the Berglas School of Economics at Tel Aviv University, compared the quality of diagnostic and treatment recommendations...

AI Tool can Track Effectiveness of Multi…

A new artificial intelligence (AI) tool that can help interpret and assess how well treatments are working for patients with multiple sclerosis (MS) has been developed by UCL researchers. AI uses...

Surrey and Sussex Healthcare NHS Trust g…

Surrey and Sussex Healthcare NHS Trust has marked an important milestone in connecting busy radiologists across large parts of South East England, following the successful go live of Sectra's enterprise...

Dr Jason Broch Joins the Highland Market…

The Highland Marketing advisory board has welcomed a new member - Dr Jason Broch, a GP and director with a strong track record in the NHS and IT-enabled transformation. Dr Broch...

DMEA 2025 Ends with Record Attendance an…

8 - 10 April 2025, Berlin, Germany. DMEA 2025 came to a successful close with record attendance and an impressive program. 20,500 participants attended Europe's leading digital health event over the...

Multi-Resistance in Bacteria Predicted b…

An AI model trained on large amounts of genetic data can predict whether bacteria will become antibiotic-resistant. The new study shows that antibiotic resistance is more easily transmitted between genetically...

AI-Driven Smart Devices to Transform Hea…

AI-powered, internet-connected medical devices have the potential to revolutionise healthcare by enabling early disease detection, real-time patient monitoring, and personalised treatments, a new study suggests. They are already saving lives...