New, Robust and Inexpensive Technique for Protein Analysis in Tissues

A new technique to study proteins, which does not require advanced equipment, specialized labs or expensive reagents, has been developed at Uppsala University, Sweden. The technique could be further developed to be used in point of care devices, for instance for diagnostic purposes. The possibility to identify and localize proteins in tissues is essential for understanding disease mechanisms and for diagnostics. However, today very advanced instruments are often needed to study proteins and how they interact with each other. An example is the microscopy technique that was awarded last year's Nobel Prize in chemistry; super resolution fluorescence microscopy.

Such equipment is expensive to purchase and often requires special training to handle. In order to use protein detection for diagnostic purposes, e.g. in a clinic, new, less complicated methods to study proteins are needed. Such methods should be temperature insensitive and not require expensive instruments, costly reagents or specially trained staff.

In the most recent issue of the journal Nature Communications the researchers present a technique that could be used by for instance hospital staff, to detect relevant proteins. The technique is based on the binding of antibodies, either to two sites on the same protein or to two proteins that are localized very close to each other. The antibodies have been linked to DNA strands that will attach to each other if they are close enough. When this happens a chain reaction will start in which increasing numbers of DNA strands are attached. To each DNA strand a fluorescent substance has been linked, which will emit light when it is irradiated with light of a certain wavelength.

"When the chain reaction has run for a while enough fluorescent molecules have been incorporated to allow us to observe them as very bright dots in a microscope, reflecting the presence of a protein of interest. The more dots there more protein," says Ola Söderberg, who has developed the technique together with Masood Kamali-Mogaddam and their research teams.

The chain reaction does not include any enzymes, which means that it can take place at room temperature. The microscopes needed to study the bright dots are relatively simple and commonly available in hospital and research labs. Since two antibodies are bound in the first step "false" signals can be avoided, making the reaction very specific for the studied protein.

"All this implies that our technique can be used as a robust and inexpensive method to localize proteins in tissues. We hope that it soon can be used both for clinical applications and for research purposes," says Ola Söderberg.

The technique has been developed in collaboration with researchers in Uppsala, Scotland and Austria. The results have been published online in the journal Nature Communications.

Reference: Proximity Dependent Initiation of Hybridization Chain Reaction, Nature Communications, DOI: 10.1038/ncomms8294

Science for Life Laboratory (SciLifeLab) is a national centre for molecular biosciences with the focus on health and environmental research. The centre combines advanced technical know-how and state-of-the art equipment with a broad knowledge of translational medicine and molecular bioscience.

Uppsala University - quality, knowledge, and creativity since 1477 World-class research and outstanding education of global benefit to society, business, and culture. Uppsala University is one of northern Europe's highest ranked academic institutions.

Most Popular Now

Integrating Care Records is Good. Using …

Opinion Article by Dr Paul Deffley, Chief Medical Officer, Alcidion. A single patient record already exists in the NHS. Or at least, that’s a perception shared by many. A survey of...

Should AI Chatbots Replace Your Therapis…

The new study exposes the dangerous flaws in using artificial intelligence (AI) chatbots for mental health support. For the first time, the researchers evaluated these AI systems against clinical standards...

AI could Help Pathologists Match Cancer …

A new study by researchers at the Icahn School of Medicine at Mount Sinai, Memorial Sloan Kettering Cancer Center, and collaborators, suggests that artificial intelligence (AI) could significantly improve how...

AI Detects Early Signs of Osteoporosis f…

Investigators have developed an artificial intelligence-assisted diagnostic system that can estimate bone mineral density in both the lumbar spine and the femur of the upper leg, based on X-ray images...

AI Model Converts Hospital Records into …

UCLA researchers have developed an AI system that turns fragmented electronic health records (EHR) normally in tables into readable narratives, allowing artificial intelligence to make sense of complex patient histories...

AI Sharpens Pathologists' Interpret…

Pathologists' examinations of tissue samples from skin cancer tumours improved when they were assisted by an AI tool. The assessments became more consistent and patients' prognoses were described more accurately...

AI Tool Detects Surgical Site Infections…

A team of Mayo Clinic researchers has developed an artificial intelligence (AI) system that can detect surgical site infections (SSIs) with high accuracy from patient-submitted postoperative wound photos, potentially transforming...

Forging a Novel Therapeutic Path for Pat…

Rett syndrome is a devastating rare genetic childhood disorder primarily affecting girls. Merely 1 out of 10,000 girls are born with it and much fewer boys. It is caused by...

Mayo Clinic's AI Tool Identifies 9 …

Mayo Clinic researchers have developed a new artificial intelligence (AI) tool that helps clinicians identify brain activity patterns linked to nine types of dementia, including Alzheimer's disease, using a single...

AI Detects Fatty Liver Disease with Ches…

Fatty liver disease, caused by the accumulation of fat in the liver, is estimated to affect one in four people worldwide. If left untreated, it can lead to serious complications...

Meet Your Digital Twin

Before an important meeting or when a big decision needs to be made, we often mentally run through various scenarios before settling on the best course of action. But when...

NHS National Rehabilitation Centre to De…

The new NHS National Rehabilitation Centre will deploy technology to help patients to maintain their independence as they recover from life-changing injuries and illnesses and regain quality of life. Airwave Healthcare...