Airport Security-Style Technology Could Help Doctors Decide on Stroke Treatment

A new computer program could help doctors predict which patients might suffer potentially fatal side-effects from a key stroke treatment. The program, which assesses brain scans using pattern recognition software similar to that used in airport security and passport control, has been developed by researchers at Imperial College London. Results of a pilot study funded by the Wellcome Trust, which used the software are published in the journal Neuroimage Clinical.

Stroke affects over 15 million people each year worldwide. Ischemic strokes are the most common and these occur when small clots interrupt the blood supply to the brain. The most effective treatment is called intravenous thrombolysis, which injects a chemical into the blood vessels to break up or 'bust' the clots, allowing blood to flow again.

However, because intravenous thombolysis effectively thins the blood, it can cause harmful side effects in about six per cent of patients, who suffer bleeding within the skull. This often worsens the disability and can cause death.

Clinicians attempt to identify patients most at risk of bleeding on the basis of several signs assessed from brain scans. However, these signs can often be very subtle and human judgements about their presence and severity tend to lack accuracy and reliability.

In the new study, researchers trained a computer program to recognise patterns in the brain scans that represent signs such as brain-thinning or diffuse small-vessel narrowing, in order to predict the likelihood of bleeding. They then pitted the automated pattern recognition software against radiologists' ratings of the scans. The computer program predicted the occurrence of bleeding with 74 per cent accuracy compared to 63 per cent for the standard prognostic approach.

Dr Paul Bentley from the Department of Medicine, lead author of the study, said: "For each patient that doctors see, they have to weigh up whether the benefits of a treatment will outweigh the risks of side effects. Intravenous thrombolysis carries the risk of very severe side effects for a small proportion of patients, so having the best possible information on which to base our decisions is vital. Our new study is a pilot but it suggests that ultimately doctors might be able to use our pattern recognition software, alongside existing methods, in order to make more accurate assessments about who is most at risk and treat them accordingly. We are now planning to carry out a much larger study to more fully assess its potential."

The research team conducted a retrospective analysis of computerized tomography (CT) scans from 116 patients. These are scans that use x-rays to produce 'virtual slices' of the brain. All the patients had suffered ischemic strokes and undergone intravenous thrombolysis in Charing Cross Hospital. In the sample the researchers included scans from 16 patients who had subsequently developed serious bleeding within the brain.

Without knowing the outcomes of the treatment, three independent experts examined the scans and used standard prognostic tools to predict whether patients would develop bleeding after treatment.

In parallel the computer program directly assessed and classified the patterns of the brain scans to produce its own predictions.

Researchers evaluated the performance of both approaches by comparing their predictions of bleeding with the actual experiences of the patients.

Using a statistical test the research showed the computer program predicted the occurrence of bleeding with 74 per cent accuracy compared to 63 per cent for the standard prognostic approach.

The researchers also gave the computer a series of 'identity parades' by asking the software to choose which patient out of ten scans went on to suffer bleeding. The computer correctly identified the patient 56 per cent of the time while the standard approach was correct 31 per cent of the time.

The researchers are keen to explore whether their software could also be used to identify stroke patients who might be helped by intravenous thrombolysis who are not currently offered this treatment. At present only about 20 per cent of patients with strokes are treated using intravenous thrombolysis, as doctors usually exclude those with particularly severe strokes or patients who have suffered the stroke more than four and half hours before arriving at hospital. The researchers believe that their software has the potential to help doctors to identify which of those patients are at low risk of suffering side effects and hence might benefit from treatment.

The study was supported through the Wellcome Trust Institutional Strategic Support Fund and the researchers have secured further funding from the Trust to conduct a larger study that will be looking at data from about 2000 more subjects across London.

Most Popular Now

AI Catches One-Third of Interval Breast …

An AI algorithm for breast cancer screening has potential to enhance the performance of digital breast tomosynthesis (DBT), reducing interval cancers by up to one-third, according to a study published...

Great plan: Now We need to Get Real abou…

The government's big plan for the 10 Year Health Plan for the NHS laid out a big role for delivery. However, the Highland Marketing advisory board felt the missing implementation...

Researchers Create 'Virtual Scienti…

There may be a new artificial intelligence-driven tool to turbocharge scientific discovery: virtual labs. Modeled after a well-established Stanford School of Medicine research group, the virtual lab is complete with an...

From WebMD to AI Chatbots: How Innovatio…

A new research article published in the Journal of Participatory Medicine unveils how successive waves of digital technology innovation have empowered patients, fostering a more collaborative and responsive health care...

New AI Tool Accelerates mRNA-Based Treat…

A new artificial intelligence (AI) model can improve the process of drug and vaccine discovery by predicting how efficiently specific mRNA sequences will produce proteins, both generally and in various...

AI also Assesses Dutch Mammograms Better…

AI is detecting tumors more often and earlier in the Dutch breast cancer screening program. Those tumors can then be treated at an earlier stage. This has been demonstrated by...

RSNA AI Challenge Models can Independent…

Algorithms submitted for an AI Challenge hosted by the Radiological Society of North America (RSNA) have shown excellent performance for detecting breast cancers on mammography images, increasing screening sensitivity while...

AI could Help Emergency Rooms Predict Ad…

Artificial intelligence (AI) can help emergency department (ED) teams better anticipate which patients will need hospital admission, hours earlier than is currently possible, according to a multi-hospital study by the...

Head-to-Head Against AI, Pharmacy Studen…

Students pursuing a Doctor of Pharmacy degree routinely take - and pass - rigorous exams to prove competency in several areas. Can ChatGPT accurately answer the same questions? A new...

NHS Active 10 Walking Tracker Users are …

Users of the NHS Active 10 app, designed to encourage people to become more active, immediately increased their amount of brisk and non-brisk walking upon using the app, according to...

New AI Tool Illuminates "Dark Side…

Proteins sustain life as we know it, serving many important structural and functional roles throughout the body. But these large molecules have cast a long shadow over a smaller subclass...

The Human Touch of Doctors will Still be…

AI-based medicine will revolutionise care including for Alzheimer’s and diabetes, predicts a technology expert, but it must be accessible to all patients. Healing with Artificial Intelligence, written by technology expert Daniele...