Detecting Software Errors via Genetic Algorithms

According to a current study from the University of Cambridge, software developers are spending about the half of their time on detecting errors and resolving them. Projected onto the global software industry, according to the study, this would amount to a bill of about 312 billion US dollars every year. "Of course, automated testing is cheaper", explains Andreas Zeller, professor of Software Engineering at Saarland University, as you could run a program a thousand times without incurring any charges. "But where do these necessary test cases come from?" asks Zeller. "Generating them automatically is tough, but thinking of them yourself is even tougher."

In cooperation with the computer scientists Nikolas Havrikov and Matthias Höschele, he has now developed the software system "XMLMATE". It generates test cases automatically and uses them to test the given program code automatically. What is special about it is that the only requirement the program to be tested has to meet is that its input must be structured in a certain way, since the researchers use it to generate the initial set of test cases. They feed them to the so-called genetic algorithm on which the testing is based. It works similarly to biological evolution, where the chromosomes are operating as the input. Only the input that covers a significant amount of code which has not been executed yet survives. As Nikolas Havrikov explains their strategy: "It is not easy to detect a real error, and the more code we are covering, the more sure we can be that more errors will not occur." Havrikov implemented XMLMATE. "As we use the real existing input interface, we make sure that there are no false alarms: Every error found can also happen during the execution of the program," adds Zeller.

The researchers have unleashed their software on open source programs users are already working with in daily life. With their program they detected almost twice as many fatal errors as similar test methods that only work with randomly generated input. "But the best thing is that we are completely independent from the application area. With our framework, we are not only able to test computer networks, the processing of datasets, websites or operating systems, but we can also examine software for sensors in cars," says Zeller.

The computer scientists in Saarbrücken developed XMLMATE in the Java programming language. The input for the software to test is defined according to the description language XML, so the existence of a XML schema is helpful. Since XML is standardized and considered as a kind of world language between input formats, most of the programming input fits XMLMATE and if not, it can be quickly converted to do so with the corresponding tools.

The Department of Computer Science represents the center of computer science research in Saarbrücken. Seven other worldwide renowned research institutes are close by the department: The Max Planck Institutes for Informatics and for Software Systems, the German Research Center for Artificial Intelligence (DFKI), the Center for Bioinformatics, the Intel Visual Computing Institute, the Center for IT Security, Privacy and Accountability (CISPA) and the Cluster of Excellence "Multimodal Computing and Interaction".

Most Popular Now

Open Medical Works with Moray's Dig…

Open Medical is working with the Digital Health & Care Innovation Centre’s Rural Centre of Excellence on a referral management plan, as part of a research and development scheme to...

Generative AI on Track to Shape the Futu…

Using advanced artificial intelligence (AI), researchers have developed a novel method to make drug development faster and more efficient. In a new paper, Xia Ning, lead author of the study and...

Personalized Breast Cancer Prevention No…

A new telemedicine service for personalised breast cancer prevention has launched at preventcancer.co.uk. It allows women aged 30 to 75 across the UK to understand their risk of developing breast...

New App may Help Caregivers of People Ge…

A new study by investigators from Mass General Brigham showed that a new app they created can help improve the quality of life for caregivers of patients undergoing bone marrow...

An App to Detect Heart Attacks and Strok…

A potentially lifesaving new smartphone app can help people determine if they are suffering heart attacks or strokes and should seek medical attention, a clinical study suggests. The ECHAS app (Emergency...

A Machine Learning Tool for Diagnosing, …

Scientists aiming to advance cancer diagnostics have developed a machine learning tool that is able to identify metabolism-related molecular profile differences between patients with colorectal cancer and healthy people. The analysis...

Fine-Tuned LLMs Boost Error Detection in…

A type of artificial intelligence (AI) called fine-tuned large language models (LLMs) greatly enhances error detection in radiology reports, according to a new study published in Radiology, a journal of...

DeepSeek-R1 Offers Promising Potential t…

A joint research team from The Hong Kong University of Science and Technology and The Hong Kong University of Science and Technology (Guangzhou) has published a perspective article in MedComm...

Deep Learning can Predict Lung Cancer Ri…

A deep learning model was able to predict future lung cancer risk from a single low-dose chest CT scan, according to new research published at the ATS 2025 International Conference...