New Software Traces Origins of Genetic Disorders 20 Times More Accurately

In a bioinformatics breakthrough, iMinds - STADIUS - KU Leuven researchers have successfully applied advanced artificial intelligence to enable the automated analysis of huge amounts of genetic data. Their new software suite, eXtasy, automatically generates the most likely cause of a given genetic disorder. The breakthrough directly impacts the treatment of millions of people with a hereditary disease.

At least 5% of the world population suffers from a rare, hereditary disease. Until recently, the origins of these genetic disorders could be correctly identified in only half of all cases. The lack of a conclusive diagnosis prolongs uncertainty for both the patients and their families and marks the beginning of a long search, and expensive, strenuous and even unnecessary treatments.

The introduction of new, cheaper technologies for deciphering the human genome held the promise of a quicker and more accurate diagnosis of hereditary diseases. But this proved challenging –particularly because of the huge amount and complexity of the data to be processed.

The genomes of two healthy individuals show no less than four million differences or mutations. Most of these mutations are harmless, but just one extra, malignant mutation can be enough to cause a genetic anomaly. Existing analytical methods simply do not have the means to reliably and quickly find this needle in the haystack.

The eXtasy software suite developed by iMinds - STADIUS - KU Leuven researchers drastically changes this outlook. The program can trace the origins of genetic disorders twenty times more accurately than existing analytical methods.

"eXtasy uses advanced artificial intelligence to combine whole sets of complex data into a global score that reflects how important a certain mutation is for a certain disease. This data can consist of networks of interacting proteins, but could also include scientific publications or even scores that estimate how harmful a mutation is for the protein in question," explains Prof. Dr. Yves Moreau of iMinds - STADIUS - KU Leuven. "In this way, we can detect disease-causing mutations twenty times more accurately, and provide patients and their families with a much faster and more conclusive diagnosis. We hope this can considerably improve and accelerate the treatment of millions of patients."

"Searching for disease-causing mutations in a patient's genome is really like searching for one specific needle in an enormous pile of needles. eXtasy allows us to formulate more accurate diagnoses, which in turn forms the basis of customized treatments," says Prof. Dr. Joris Vermeesch, who heads the Laboratory for Cytogenetics and Genome Research at KU Leuven.

"Practical applications of genome sequencing technology are possible only if variations can be interpreted accurately. eXtasy is a step in the right direction," adds Prof. Dr. Koen Devriendt, Head of the Department of Human Genetics at the University Hospital of Leuven.

Most Popular Now

Philips Foundation 2024 Annual Report: E…

Marking its tenth anniversary, Philips Foundation released its 2024 Annual Report, highlighting a year in which the Philips Foundation helped provide access to quality healthcare for 46.5 million people around...

New AI Transforms Radiology with Speed, …

A first-of-its-kind generative AI system, developed in-house at Northwestern Medicine, is revolutionizing radiology - boosting productivity, identifying life-threatening conditions in milliseconds and offering a breakthrough solution to the global radiologist...

Scientists Argue for More FDA Oversight …

An agile, transparent, and ethics-driven oversight system is needed for the U.S. Food and Drug Administration (FDA) to balance innovation with patient safety when it comes to artificial intelligence-driven medical...

New Research Finds Specific Learning Str…

If data used to train artificial intelligence models for medical applications, such as hospitals across the Greater Toronto Area, differs from the real-world data, it could lead to patient harm...

Giving Doctors an AI-Powered Head Start …

Detection of melanoma and a range of other skin diseases will be faster and more accurate with a new artificial intelligence (AI) powered tool that analyses multiple imaging types simultaneously...

AI Agents for Oncology

Clinical decision-making in oncology is challenging and requires the analysis of various data types - from medical imaging and genetic information to patient records and treatment guidelines. To effectively support...

Patients say "Yes..ish" to the…

As artificial intelligence (AI) continues to be integrated in healthcare, a new multinational study involving Aarhus University sheds light on how dental patients really feel about its growing role in...

'AI Scientist' Suggests Combin…

An 'AI scientist', working in collaboration with human scientists, has found that combinations of cheap and safe drugs - used to treat conditions such as high cholesterol and alcohol dependence...

Brains vs. Bytes: Study Compares Diagnos…

A University of Maine study compared how well artificial intelligence (AI) models and human clinicians handled complex or sensitive medical cases. The study published in the Journal of Health Organization...

Start-ups in the Spotlight at MEDICA 202…

17 - 20 November 2025, Düsseldorf, Germany. MEDICA, the leading international trade fair and platform for healthcare innovations, will once again confirm its position as the world's number one hotspot for...