New Software Traces Origins of Genetic Disorders 20 Times More Accurately

In a bioinformatics breakthrough, iMinds - STADIUS - KU Leuven researchers have successfully applied advanced artificial intelligence to enable the automated analysis of huge amounts of genetic data. Their new software suite, eXtasy, automatically generates the most likely cause of a given genetic disorder. The breakthrough directly impacts the treatment of millions of people with a hereditary disease.

At least 5% of the world population suffers from a rare, hereditary disease. Until recently, the origins of these genetic disorders could be correctly identified in only half of all cases. The lack of a conclusive diagnosis prolongs uncertainty for both the patients and their families and marks the beginning of a long search, and expensive, strenuous and even unnecessary treatments.

The introduction of new, cheaper technologies for deciphering the human genome held the promise of a quicker and more accurate diagnosis of hereditary diseases. But this proved challenging –particularly because of the huge amount and complexity of the data to be processed.

The genomes of two healthy individuals show no less than four million differences or mutations. Most of these mutations are harmless, but just one extra, malignant mutation can be enough to cause a genetic anomaly. Existing analytical methods simply do not have the means to reliably and quickly find this needle in the haystack.

The eXtasy software suite developed by iMinds - STADIUS - KU Leuven researchers drastically changes this outlook. The program can trace the origins of genetic disorders twenty times more accurately than existing analytical methods.

"eXtasy uses advanced artificial intelligence to combine whole sets of complex data into a global score that reflects how important a certain mutation is for a certain disease. This data can consist of networks of interacting proteins, but could also include scientific publications or even scores that estimate how harmful a mutation is for the protein in question," explains Prof. Dr. Yves Moreau of iMinds - STADIUS - KU Leuven. "In this way, we can detect disease-causing mutations twenty times more accurately, and provide patients and their families with a much faster and more conclusive diagnosis. We hope this can considerably improve and accelerate the treatment of millions of patients."

"Searching for disease-causing mutations in a patient's genome is really like searching for one specific needle in an enormous pile of needles. eXtasy allows us to formulate more accurate diagnoses, which in turn forms the basis of customized treatments," says Prof. Dr. Joris Vermeesch, who heads the Laboratory for Cytogenetics and Genome Research at KU Leuven.

"Practical applications of genome sequencing technology are possible only if variations can be interpreted accurately. eXtasy is a step in the right direction," adds Prof. Dr. Koen Devriendt, Head of the Department of Human Genetics at the University Hospital of Leuven.

Most Popular Now

AI can Help Improve Emergency Room Admis…

Generative artificial intelligence (AI), such as GPT-4, can help predict whether an emergency room patient needs to be admitted to the hospital even with only minimal training on a limited...

Philips ePatch and AI Analytics Platform…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, announced the successful nationwide rollout of its ambulatory cardiac monitoring service in Spain using its unique wearable ePatch...

Is 'Smart Health Tech' Solving…

Opinion Article by Dr. Paul Deffley, Chief Medical Officer, Alcidion. Where would you position the NHS in relation to other countries, when it comes to the adoption of innovative technologies to...

ChatGPT Extracts Data for Ischaemic Stro…

In an ischaemic stroke, an artery in the brain is blocked by blood clots and the brain cells can no longer be supplied with blood as a result. Doctors must...

Comprehensive Bibliographic Dataset Adva…

A groundbreaking study published in Health Data Science, a Science Partner Journal, introduces a curated bibliographic dataset that aims to revolutionize the landscape of Health Artificial Intelligence (AI) research. Led...

New AI Algorithm may Improve Autoimmune …

A new advanced artificial intelligence (AI) algorithm may lead to better - and earlier - predictions and novel therapies for autoimmune diseases, which involve the immune system mistakenly attacking their...

AI Health Coach Lowers Blood Pressure an…

A new study in JMIR Cardio, published by JMIR Publications, shows that a fully digital, artificial intelligence (AI)-driven lifestyle coaching program can effectively reduce blood pressure (BP) in adults with...

Will Generative AI Change the Way Univer…

Since the launch of ChatGPT 3 in November 2022, we've been abuzz with talk of artificial intelligence: is it an unprecedented opportunity, or will it rob everyone of jobs and...

New Deep Learning Model is 'Game Ch…

Research led by the University of Plymouth has shown that a new deep learning AI model can identify what happens and when during embryonic development, from video. Published in the Journal...

Huge NHS Cloud Deals Mean Tough Question…

Opinion Article by Chris Scarisbrick, Deputy Managing Director, Sectra. The largest public cloud projects to ever take place within the NHS are beginning. Regional procurements for public cloud hosted diagnostic imaging...

A Three-Point Plan for Digital Delivery

Sam Shah has seen health tech policy up-close and worries that little progress has been made over the past five-years. However, he has a plan for any health and social...

AI Tech should Augment Physician Decisio…

The use of artificial intelligence (AI) in clinical health care has the potential to transform health care delivery but it should not replace physician decision-making, says the American College of...