New Software Traces Origins of Genetic Disorders 20 Times More Accurately

In a bioinformatics breakthrough, iMinds - STADIUS - KU Leuven researchers have successfully applied advanced artificial intelligence to enable the automated analysis of huge amounts of genetic data. Their new software suite, eXtasy, automatically generates the most likely cause of a given genetic disorder. The breakthrough directly impacts the treatment of millions of people with a hereditary disease.

At least 5% of the world population suffers from a rare, hereditary disease. Until recently, the origins of these genetic disorders could be correctly identified in only half of all cases. The lack of a conclusive diagnosis prolongs uncertainty for both the patients and their families and marks the beginning of a long search, and expensive, strenuous and even unnecessary treatments.

The introduction of new, cheaper technologies for deciphering the human genome held the promise of a quicker and more accurate diagnosis of hereditary diseases. But this proved challenging –particularly because of the huge amount and complexity of the data to be processed.

The genomes of two healthy individuals show no less than four million differences or mutations. Most of these mutations are harmless, but just one extra, malignant mutation can be enough to cause a genetic anomaly. Existing analytical methods simply do not have the means to reliably and quickly find this needle in the haystack.

The eXtasy software suite developed by iMinds - STADIUS - KU Leuven researchers drastically changes this outlook. The program can trace the origins of genetic disorders twenty times more accurately than existing analytical methods.

"eXtasy uses advanced artificial intelligence to combine whole sets of complex data into a global score that reflects how important a certain mutation is for a certain disease. This data can consist of networks of interacting proteins, but could also include scientific publications or even scores that estimate how harmful a mutation is for the protein in question," explains Prof. Dr. Yves Moreau of iMinds - STADIUS - KU Leuven. "In this way, we can detect disease-causing mutations twenty times more accurately, and provide patients and their families with a much faster and more conclusive diagnosis. We hope this can considerably improve and accelerate the treatment of millions of patients."

"Searching for disease-causing mutations in a patient's genome is really like searching for one specific needle in an enormous pile of needles. eXtasy allows us to formulate more accurate diagnoses, which in turn forms the basis of customized treatments," says Prof. Dr. Joris Vermeesch, who heads the Laboratory for Cytogenetics and Genome Research at KU Leuven.

"Practical applications of genome sequencing technology are possible only if variations can be interpreted accurately. eXtasy is a step in the right direction," adds Prof. Dr. Koen Devriendt, Head of the Department of Human Genetics at the University Hospital of Leuven.

Most Popular Now

Stepping Hill Hospital Announced as SPAR…

Stepping Hill Hospital, part of Stockport NHS Foundation Trust, has replaced its bedside units with state-of-the art devices running a full range of information, engagement, communications and productivity apps, to...

DMEA 2025: Digital Health Worldwide in B…

8 - 10 April 2025, Berlin, Germany. From the AI Act, to the potential of the European Health Data Space, to the power of patient data in Scandinavia - DMEA 2025...

Is AI in Medicine Playing Fair?

As artificial intelligence (AI) rapidly integrates into health care, a new study by researchers at the Icahn School of Medicine at Mount Sinai reveals that all generative AI models may...

New System for the Early Detection of Au…

A team from the Human-Tech Institute-Universitat Politècnica de València has developed a new system for the early detection of Autism Spectrum Disorder (ASD) using virtual reality and artificial intelligence. The...

Generative AI's Diagnostic Capabili…

The use of generative AI for diagnostics has attracted attention in the medical field and many research papers have been published on this topic. However, because the evaluation criteria were...

Diagnoses and Treatment Recommendations …

A new study led by Prof. Dan Zeltzer, a digital health expert from the Berglas School of Economics at Tel Aviv University, compared the quality of diagnostic and treatment recommendations...

AI Tool can Track Effectiveness of Multi…

A new artificial intelligence (AI) tool that can help interpret and assess how well treatments are working for patients with multiple sclerosis (MS) has been developed by UCL researchers. AI uses...

Surrey and Sussex Healthcare NHS Trust g…

Surrey and Sussex Healthcare NHS Trust has marked an important milestone in connecting busy radiologists across large parts of South East England, following the successful go live of Sectra's enterprise...

Dr Jason Broch Joins the Highland Market…

The Highland Marketing advisory board has welcomed a new member - Dr Jason Broch, a GP and director with a strong track record in the NHS and IT-enabled transformation. Dr Broch...

DMEA 2025 Ends with Record Attendance an…

8 - 10 April 2025, Berlin, Germany. DMEA 2025 came to a successful close with record attendance and an impressive program. 20,500 participants attended Europe's leading digital health event over the...

Multi-Resistance in Bacteria Predicted b…

An AI model trained on large amounts of genetic data can predict whether bacteria will become antibiotic-resistant. The new study shows that antibiotic resistance is more easily transmitted between genetically...

AI-Driven Smart Devices to Transform Hea…

AI-powered, internet-connected medical devices have the potential to revolutionise healthcare by enabling early disease detection, real-time patient monitoring, and personalised treatments, a new study suggests. They are already saving lives...