The Quest for a Better Bionic Hand

For an amputee, replacing a missing limb with a functional prosthetic can alleviate physical or emotional distress and mean a return of vocational ability or cosmetics. Studies show, however, that up to 50 percent of hand amputees still do not use their prosthesis regularly due to less than ideal functionality, appearance, and controllability. But Silvestro Micera, of the École Polytechnique Fédérale de Lausanne (EPFL) in Switzerland, is paving the way for new, smart prosthetics that connect directly to the nervous system. The benefits are more versatile prosthetics with intuitive motor control and realistic sensory feedback - in essence, they could one day return dexterity and the sensation of touch to an amputee.

At the 2013 Annual Meeting of the American Association for the Advancement of Science (AAAS) in Boston, Micera reports the results of previous work conducting a four-week clinical trial that improved sensory feedback in amputees by using intraneural electrodes implanted into the median and ulnar nerves. This interface holds great promise because of its ability to create an intimate and natural connection with the nerves, and because it is less invasive than other methods. It also provides fast, intuitive, bidirectional flow of information between the nervous system and the prosthetic, resulting in a more realistic experience and ultimately improved function.

"We could be on the cusp of providing new and more effective clinical solutions to amputees in the next years," says Micera, who is Head of the Translational Neural Engineering Laboratory at EPFL and Professor at the Scuola Superiore Sant'Anna in Italy. Micera and colleagues tested their system by implanting intraneural electrodes into the nerves of an amputee. The electrodes stimulated the sensory peripheral system, delivering different types of touch feelings. Then the researchers analyzed the motor neural signals recorded from the nerves and showed that information related to grasping could indeed be extracted. That information was then used to control a hand prosthesis placed near the subject but not physically attached to the arm of the amputee.

At AAAS in Boston, Micera also describes his recent activities to improve the efficacy of this approach and announces a new clinical trial starting soon as part of the Italian Ministry of Health's NEMESIS project, under the clinical supervision of Prof. Paolo M. Rossini. This new trial carries this research a step further by connecting the prosthetic hand directly to the patient for the first real-time, bidirectional control using peripheral neural signals. Though results are not yet available, the researchers hope to find still further improvement in the sensory feedback and overall control of the prosthetics with this new method.

About EPFL
With over 350 laboratories and research groups on campus, EPFL is one of Europe's most innovative and productive scientific institutions. Ranked top 3 in Europe and top 20 worldwide in many scientific rankings, EPFL has attracted the best researchers in their fields. The institute's unique structure fosters trans-disciplinary research and promotes partnerships with other institutions. It continuously combines fundamental research and engineering.

Most Popular Now

Unlocking the 10 Year Health Plan

The government's plan for the NHS is a huge document. Jane Stephenson, chief executive of SPARK TSL, argues the key to unlocking its digital ambitions is to consider what it...

Alcidion Grows Top Talent in the UK, wit…

Alcidion has today announced the addition of three new appointments to their UK-based team, with one internal promotion and two external recruits. Dr Paul Deffley has been announced as the...

AI can Find Cancer Pathologists Miss

Men assessed as healthy after a pathologist analyses their tissue sample may still have an early form of prostate cancer. Using AI, researchers at Uppsala University have been able to...

New Training Year Starts at Siemens Heal…

In September, 197 school graduates will start their vocational training or dual studies in Germany at Siemens Healthineers. 117 apprentices and 80 dual students will begin their careers at Siemens...

AI, Full Automation could Expand Artific…

Automated insulin delivery (AID) systems such as the UVA Health-developed artificial pancreas could help more type 1 diabetes patients if the devices become fully automated, according to a new review...

How AI could Speed the Development of RN…

Using artificial intelligence (AI), MIT researchers have come up with a new way to design nanoparticles that can more efficiently deliver RNA vaccines and other types of RNA therapies. After training...

MIT Researchers Use Generative AI to Des…

With help from artificial intelligence, MIT researchers have designed novel antibiotics that can combat two hard-to-treat infections: drug-resistant Neisseria gonorrhoeae and multi-drug-resistant Staphylococcus aureus (MRSA). Using generative AI algorithms, the research...

AI Hybrid Strategy Improves Mammogram In…

A hybrid reading strategy for screening mammography, developed by Dutch researchers and deployed retrospectively to more than 40,000 exams, reduced radiologist workload by 38% without changing recall or cancer detection...

Penn Developed AI Tools and Datasets Hel…

Doctors treating kidney disease have long depended on trial-and-error to find the best therapies for individual patients. Now, new artificial intelligence (AI) tools developed by researchers in the Perelman School...

Are You Eligible for a Clinical Trial? C…

A new study in the academic journal Machine Learning: Health discovers that ChatGPT can accelerate patient screening for clinical trials, showing promise in reducing delays and improving trial success rates. Researchers...

Global Study Reveals How Patients View M…

How physicians feel about artificial intelligence (AI) in medicine has been studied many times. But what do patients think? A team led by researchers at the Technical University of Munich...

New AI Tool Addresses Accuracy and Fairn…

A team of researchers at the Icahn School of Medicine at Mount Sinai has developed a new method to identify and reduce biases in datasets used to train machine-learning algorithms...