Computer Simulator to Manage Hospital Emergencies

Researchers of the group High Performance Computing for Efficient Applications and Simulation (HPC4EAS) of the Department of Computer Architecture and Operating Systems of the Universitat Autònoma de Barcelona (UAB), in collaboration with the team at the Emergency Services Unit at Hospital de Sabadell (Parc Taulí Healthcare Corporation), have developed an advanced computer simulator to help in decision-making processes (DSS, or decision support system) which could aid emergency service units in their operations management.

The model was designed based on real data provided by the Parc Taulí Healthcare Corporation, using modelling and simulation techniques adapted to each individual, and which require the application of high performance computing. The system analyses the reaction of the emergency unit when faced with different scenarios and optimises the resources available.

The simulator was created by lecturer Emilio Luque, main researcher of the project; UAB PhD students Manel Taboada, lecturer at the Gimbernat School of Computer Science - a UAB-affiliated centre - and Eduardo Cabrera, trainee researcher; and María Luisa Iglesias and Francisco Epelde, heads of the Emergency Services Unit of Parc Taulí.

"Planning the use of resources available to an emergency unit staff is a complex task, since the arrival of patients varies greatly, not only during the day, but depending on the week, month, etc. That is why those in charge find it useful to have computer tools which simulate the effects of special situations, such as seasonal increases, epidemics, and so forth, in order to be able to identify the best combination of resources for each moment," Emilio Luque explains.

The most outstanding part of the simulator is the precise representation of the behaviour of individuals who were identified and their interactions. "Several tries have been made to simulate emergency services, but using other types of methodologies which did not gather enough data on a system depending on human behaviour, which is based on the relation of individuals who act more or less independently in the decisions they make. In addition to in depth knowledge of the methodology, there is also the need to have direct access to the information and data provided by the emergency services, with the aim of verifying and validating the work carried out. This data is very relevant and was not included in other simulators," Manel Taboada states.

Researchers defined different types of patients according to their emergency level, and doctors, nursing teams, and admissions staff according to different levels of experience. This permitted studying the duration of processes such as the triage (when the emergency level is determined), the number and type of patients arriving at each moment, the waiting period for each stage or phase of the service, costs associated with each process, the amount of staff needed to determine a type of assistance and, in general, all other quantifiable variables. The system not only helps to make decisions in real time, it also can help by making forecasts and improving the functioning of the service.

The complexity level of the model is very elevated: it takes into account the elements relevant for the functioning of emergency services, such as computer systems, support services for clinic diagnoses (laboratories, X-rays, etc.) and consultations made with specialists. This allows testing service resistance in case any of these elements fail.

Another advantage of the new system compared to previous models is its adaptability to all types of emergency services. "Since it is based on a very complex service as the one we have here at Parc Taulí, it is quite easy to adapt it to other hospitals through a 'tuning' process where the data is redefined," Emilio Luque explains.

For now, the simulator has been used with level 4 and 5 patients - non-urgent patients according to the definition of the Spanish Triage System (SET). These represent almost 60% of total patients being attended, based on admission zones, triage and diagnosis-treatment processes. The version currently being developed by researchers is taking into account more severely affected patients (SET levels 1, 2 and 3). In the near future, researchers aim to apply the system to other medical specialties, such as surgical areas and paediatrics.

The implementation was carried out using the Netlogo environment simulator, of demonstrated reliability and commonly used in the application of Individual-Based Modelling and Simulation Techniques in the field of social sciences.

The work conducted by UAB researchers won first prize this past June in the 2012 International Computer Science Conference.

Most Popular Now

Stepping Hill Hospital Announced as SPAR…

Stepping Hill Hospital, part of Stockport NHS Foundation Trust, has replaced its bedside units with state-of-the art devices running a full range of information, engagement, communications and productivity apps, to...

DMEA 2025: Digital Health Worldwide in B…

8 - 10 April 2025, Berlin, Germany. From the AI Act, to the potential of the European Health Data Space, to the power of patient data in Scandinavia - DMEA 2025...

Is AI in Medicine Playing Fair?

As artificial intelligence (AI) rapidly integrates into health care, a new study by researchers at the Icahn School of Medicine at Mount Sinai reveals that all generative AI models may...

New System for the Early Detection of Au…

A team from the Human-Tech Institute-Universitat Politècnica de València has developed a new system for the early detection of Autism Spectrum Disorder (ASD) using virtual reality and artificial intelligence. The...

Generative AI's Diagnostic Capabili…

The use of generative AI for diagnostics has attracted attention in the medical field and many research papers have been published on this topic. However, because the evaluation criteria were...

Diagnoses and Treatment Recommendations …

A new study led by Prof. Dan Zeltzer, a digital health expert from the Berglas School of Economics at Tel Aviv University, compared the quality of diagnostic and treatment recommendations...

AI Tool can Track Effectiveness of Multi…

A new artificial intelligence (AI) tool that can help interpret and assess how well treatments are working for patients with multiple sclerosis (MS) has been developed by UCL researchers. AI uses...

Surrey and Sussex Healthcare NHS Trust g…

Surrey and Sussex Healthcare NHS Trust has marked an important milestone in connecting busy radiologists across large parts of South East England, following the successful go live of Sectra's enterprise...

Dr Jason Broch Joins the Highland Market…

The Highland Marketing advisory board has welcomed a new member - Dr Jason Broch, a GP and director with a strong track record in the NHS and IT-enabled transformation. Dr Broch...

DMEA 2025 Ends with Record Attendance an…

8 - 10 April 2025, Berlin, Germany. DMEA 2025 came to a successful close with record attendance and an impressive program. 20,500 participants attended Europe's leading digital health event over the...

Multi-Resistance in Bacteria Predicted b…

An AI model trained on large amounts of genetic data can predict whether bacteria will become antibiotic-resistant. The new study shows that antibiotic resistance is more easily transmitted between genetically...

AI-Driven Smart Devices to Transform Hea…

AI-powered, internet-connected medical devices have the potential to revolutionise healthcare by enabling early disease detection, real-time patient monitoring, and personalised treatments, a new study suggests. They are already saving lives...