Computer Simulator to Manage Hospital Emergencies

Researchers of the group High Performance Computing for Efficient Applications and Simulation (HPC4EAS) of the Department of Computer Architecture and Operating Systems of the Universitat Autònoma de Barcelona (UAB), in collaboration with the team at the Emergency Services Unit at Hospital de Sabadell (Parc Taulí Healthcare Corporation), have developed an advanced computer simulator to help in decision-making processes (DSS, or decision support system) which could aid emergency service units in their operations management.

The model was designed based on real data provided by the Parc Taulí Healthcare Corporation, using modelling and simulation techniques adapted to each individual, and which require the application of high performance computing. The system analyses the reaction of the emergency unit when faced with different scenarios and optimises the resources available.

The simulator was created by lecturer Emilio Luque, main researcher of the project; UAB PhD students Manel Taboada, lecturer at the Gimbernat School of Computer Science - a UAB-affiliated centre - and Eduardo Cabrera, trainee researcher; and María Luisa Iglesias and Francisco Epelde, heads of the Emergency Services Unit of Parc Taulí.

"Planning the use of resources available to an emergency unit staff is a complex task, since the arrival of patients varies greatly, not only during the day, but depending on the week, month, etc. That is why those in charge find it useful to have computer tools which simulate the effects of special situations, such as seasonal increases, epidemics, and so forth, in order to be able to identify the best combination of resources for each moment," Emilio Luque explains.

The most outstanding part of the simulator is the precise representation of the behaviour of individuals who were identified and their interactions. "Several tries have been made to simulate emergency services, but using other types of methodologies which did not gather enough data on a system depending on human behaviour, which is based on the relation of individuals who act more or less independently in the decisions they make. In addition to in depth knowledge of the methodology, there is also the need to have direct access to the information and data provided by the emergency services, with the aim of verifying and validating the work carried out. This data is very relevant and was not included in other simulators," Manel Taboada states.

Researchers defined different types of patients according to their emergency level, and doctors, nursing teams, and admissions staff according to different levels of experience. This permitted studying the duration of processes such as the triage (when the emergency level is determined), the number and type of patients arriving at each moment, the waiting period for each stage or phase of the service, costs associated with each process, the amount of staff needed to determine a type of assistance and, in general, all other quantifiable variables. The system not only helps to make decisions in real time, it also can help by making forecasts and improving the functioning of the service.

The complexity level of the model is very elevated: it takes into account the elements relevant for the functioning of emergency services, such as computer systems, support services for clinic diagnoses (laboratories, X-rays, etc.) and consultations made with specialists. This allows testing service resistance in case any of these elements fail.

Another advantage of the new system compared to previous models is its adaptability to all types of emergency services. "Since it is based on a very complex service as the one we have here at Parc Taulí, it is quite easy to adapt it to other hospitals through a 'tuning' process where the data is redefined," Emilio Luque explains.

For now, the simulator has been used with level 4 and 5 patients - non-urgent patients according to the definition of the Spanish Triage System (SET). These represent almost 60% of total patients being attended, based on admission zones, triage and diagnosis-treatment processes. The version currently being developed by researchers is taking into account more severely affected patients (SET levels 1, 2 and 3). In the near future, researchers aim to apply the system to other medical specialties, such as surgical areas and paediatrics.

The implementation was carried out using the Netlogo environment simulator, of demonstrated reliability and commonly used in the application of Individual-Based Modelling and Simulation Techniques in the field of social sciences.

The work conducted by UAB researchers won first prize this past June in the 2012 International Computer Science Conference.

Most Popular Now

Unlocking the 10 Year Health Plan

The government's plan for the NHS is a huge document. Jane Stephenson, chief executive of SPARK TSL, argues the key to unlocking its digital ambitions is to consider what it...

Alcidion Grows Top Talent in the UK, wit…

Alcidion has today announced the addition of three new appointments to their UK-based team, with one internal promotion and two external recruits. Dr Paul Deffley has been announced as the...

AI can Find Cancer Pathologists Miss

Men assessed as healthy after a pathologist analyses their tissue sample may still have an early form of prostate cancer. Using AI, researchers at Uppsala University have been able to...

AI, Full Automation could Expand Artific…

Automated insulin delivery (AID) systems such as the UVA Health-developed artificial pancreas could help more type 1 diabetes patients if the devices become fully automated, according to a new review...

New Training Year Starts at Siemens Heal…

In September, 197 school graduates will start their vocational training or dual studies in Germany at Siemens Healthineers. 117 apprentices and 80 dual students will begin their careers at Siemens...

How AI could Speed the Development of RN…

Using artificial intelligence (AI), MIT researchers have come up with a new way to design nanoparticles that can more efficiently deliver RNA vaccines and other types of RNA therapies. After training...

MIT Researchers Use Generative AI to Des…

With help from artificial intelligence, MIT researchers have designed novel antibiotics that can combat two hard-to-treat infections: drug-resistant Neisseria gonorrhoeae and multi-drug-resistant Staphylococcus aureus (MRSA). Using generative AI algorithms, the research...

AI Hybrid Strategy Improves Mammogram In…

A hybrid reading strategy for screening mammography, developed by Dutch researchers and deployed retrospectively to more than 40,000 exams, reduced radiologist workload by 38% without changing recall or cancer detection...

Penn Developed AI Tools and Datasets Hel…

Doctors treating kidney disease have long depended on trial-and-error to find the best therapies for individual patients. Now, new artificial intelligence (AI) tools developed by researchers in the Perelman School...

Are You Eligible for a Clinical Trial? C…

A new study in the academic journal Machine Learning: Health discovers that ChatGPT can accelerate patient screening for clinical trials, showing promise in reducing delays and improving trial success rates. Researchers...

New AI Tool Addresses Accuracy and Fairn…

A team of researchers at the Icahn School of Medicine at Mount Sinai has developed a new method to identify and reduce biases in datasets used to train machine-learning algorithms...

Global Study Reveals How Patients View M…

How physicians feel about artificial intelligence (AI) in medicine has been studied many times. But what do patients think? A team led by researchers at the Technical University of Munich...