Europeans Welcome Use of Robots

More than two-thirds of EU citizens (70%) have a positive view of robots, according to a new EU Eurobarometer survey; the majority agree that robots "are necessary as they can do jobs that are too hard or too dangerous for people" (88%) and that "they are a good thing for society because they help people" (76%).

The survey found that people who have some personal experience with robots are more likely to have a positive view (88%) than the wide majority who lack this experience (68%). The more interested in science people are, the more positive they tend to be towards robots (86% of EU citizens who are very interested in science and technology hold positive views about robots, compared to only 42% of those who are not interested).

EU citizens have clear views about the areas where robots should operate: they should work in areas that are too difficult or too dangerous for humans, like space exploration (52% consider this a priority), manufacturing (50%), military and security uses (41%) and search and rescue tasks (41%).

European Commission support for robotics research
Robots are widely regarded as essential for Europe's industrial competitiveness. But there are a multiplicity of new applications where robots could also contribute to the well-being of people, including the most vulnerable members of our society. Capitalising on this potential will require open debate and investment.

Boosting research and innovation in robotics is therefore one of the priorities of the Digital Agenda for Europe. For the period 2007-2013, the European Commission has spent about €600 million in robotics research; from 2013 to 2020, €14 billion are earmarked to support key enabling & industrial technologies such as robotics. Next week, the Commission will join leading European companies to commit to pool research and innovation efforts and prepare for a Public-Private Partnership in Robotics.

Robots in healthcare
Robots are increasingly being deployed in healthcare to help stroke patients recuperate, or to help surgeons carry out delicate surgical manoeuvres.

  • The INSEWING project has produced a robot capable of repairing surgical incisions made during the treatmernt of colon cancer. It should increase the life expectancy of patients suffering complications linked to the surgical stapling of wounds. Such a robot could reduce time spent in hospital, reduce treatment costs and help achieve a speedier recovery. The prototype is completed and currently applying for a patent.

Robots in education and care
A number of EU-funded projects show clearly how robotics can increase the quality of life for some vulnerable groups.

  • The RADHAR project is building a system that can develop better wheelchairs for children suffering from multiple sclerosis, cerebral palsy or a variety of other syndromes, such as autism and hereditary muscles diseases. The project will augment the steering signals of the user with information from the environmental perception of the robot to ensure safe navigation with a greater level of autonomy for the child.
  • The BRACOG project is developing a robotic arm to help sufferers of strokes and traumatic injuries perform everyday tasks by using the user's own brain activity to control the arm as it grasps and manipulates common objects. The project could eventually enable patients with severe upper limb motor handicaps to perform essential motor tasks, such as eating and drinking autonomously.
  • Children with autism may face tactile interaction difficulties that severely hamper their social interaction. In the Roboskin project, a robot was equipped with a robotic skin of new sensory technologies that provide feedback according to the style of interaction and strength of the touch. This encourages certain tactile behaviours in children living with autism, helping them further develop their body awareness and sense of self.

Robots undertaking dangerous tasks

  • European Research is helping to develop robots which can replace humans in dangerous situations or carry out potentially lethal tasks. One example is HYFLAM, a dexterous robot hand for use in bacteriological or chemical laboratories. HYFLAM can perform a set of complex - and occasionally dangerous- manipulations operations, for example helping microbiologists carry out risky tests on their samples. Working with some of the deadliest microorganisms on the planet, this robot can carry out a highly-skilled job in laboratories where accidents can be catastrophic.

For further information, please visit:
Eurobarometer survey "Public attitudes towards Robots" and Country Sheets

Most Popular Now

Philips Foundation 2024 Annual Report: E…

Marking its tenth anniversary, Philips Foundation released its 2024 Annual Report, highlighting a year in which the Philips Foundation helped provide access to quality healthcare for 46.5 million people around...

Giving Doctors an AI-Powered Head Start …

Detection of melanoma and a range of other skin diseases will be faster and more accurate with a new artificial intelligence (AI) powered tool that analyses multiple imaging types simultaneously...

Scientists Argue for More FDA Oversight …

An agile, transparent, and ethics-driven oversight system is needed for the U.S. Food and Drug Administration (FDA) to balance innovation with patient safety when it comes to artificial intelligence-driven medical...

AI Agents for Oncology

Clinical decision-making in oncology is challenging and requires the analysis of various data types - from medical imaging and genetic information to patient records and treatment guidelines. To effectively support...

Start-ups in the Spotlight at MEDICA 202…

17 - 20 November 2025, Düsseldorf, Germany. MEDICA, the leading international trade fair and platform for healthcare innovations, will once again confirm its position as the world's number one hotspot for...

AI Medical Receptionist Modernizing Doct…

A virtual medical receptionist named "Cassie," developed through research at Texas A&M University, is transforming the way patients interact with health care providers. Cassie is a digital-human assistant created by Humanate...

Using Data and AI to Create Better Healt…

Academic medical centers could transform patient care by adopting principles from learning health systems principles, according to researchers from Weill Cornell Medicine and the University of California, San Diego. In...

AI Detects Hidden Heart Disease Using Ex…

Mass General Brigham researchers have developed a new AI tool in collaboration with the United States Department of Veterans Affairs (VA) to probe through previously collected CT scans and identify...

AI Tool Set to Transform Characterisatio…

A multinational team of researchers, co-led by the Garvan Institute of Medical Research, has developed and tested a new AI tool to better characterise the diversity of individual cells within...

Human-AI Collectives Make the Most Accur…

Diagnostic errors are among the most serious problems in everyday medical practice. AI systems - especially large language models (LLMs) like ChatGPT-4, Gemini, or Claude 3 - offer new ways...

MHP-Net: A Revolutionary AI Model for Ac…

Liver cancer is the sixth most common cancer globally and a leading cause of cancer-related deaths. Accurate segmentation of liver tumors is a crucial step for the management of the...

Northern Ireland Completes Nationwide Ro…

Go-lives at Western and Southern health and social care trusts mean every pathology service is using the same laboratory information management system; improving efficiency and quality. An ambitious technology project to...