Europeans Welcome Use of Robots

More than two-thirds of EU citizens (70%) have a positive view of robots, according to a new EU Eurobarometer survey; the majority agree that robots "are necessary as they can do jobs that are too hard or too dangerous for people" (88%) and that "they are a good thing for society because they help people" (76%).

The survey found that people who have some personal experience with robots are more likely to have a positive view (88%) than the wide majority who lack this experience (68%). The more interested in science people are, the more positive they tend to be towards robots (86% of EU citizens who are very interested in science and technology hold positive views about robots, compared to only 42% of those who are not interested).

EU citizens have clear views about the areas where robots should operate: they should work in areas that are too difficult or too dangerous for humans, like space exploration (52% consider this a priority), manufacturing (50%), military and security uses (41%) and search and rescue tasks (41%).

European Commission support for robotics research
Robots are widely regarded as essential for Europe's industrial competitiveness. But there are a multiplicity of new applications where robots could also contribute to the well-being of people, including the most vulnerable members of our society. Capitalising on this potential will require open debate and investment.

Boosting research and innovation in robotics is therefore one of the priorities of the Digital Agenda for Europe. For the period 2007-2013, the European Commission has spent about €600 million in robotics research; from 2013 to 2020, €14 billion are earmarked to support key enabling & industrial technologies such as robotics. Next week, the Commission will join leading European companies to commit to pool research and innovation efforts and prepare for a Public-Private Partnership in Robotics.

Robots in healthcare
Robots are increasingly being deployed in healthcare to help stroke patients recuperate, or to help surgeons carry out delicate surgical manoeuvres.

  • The INSEWING project has produced a robot capable of repairing surgical incisions made during the treatmernt of colon cancer. It should increase the life expectancy of patients suffering complications linked to the surgical stapling of wounds. Such a robot could reduce time spent in hospital, reduce treatment costs and help achieve a speedier recovery. The prototype is completed and currently applying for a patent.

Robots in education and care
A number of EU-funded projects show clearly how robotics can increase the quality of life for some vulnerable groups.

  • The RADHAR project is building a system that can develop better wheelchairs for children suffering from multiple sclerosis, cerebral palsy or a variety of other syndromes, such as autism and hereditary muscles diseases. The project will augment the steering signals of the user with information from the environmental perception of the robot to ensure safe navigation with a greater level of autonomy for the child.
  • The BRACOG project is developing a robotic arm to help sufferers of strokes and traumatic injuries perform everyday tasks by using the user's own brain activity to control the arm as it grasps and manipulates common objects. The project could eventually enable patients with severe upper limb motor handicaps to perform essential motor tasks, such as eating and drinking autonomously.
  • Children with autism may face tactile interaction difficulties that severely hamper their social interaction. In the Roboskin project, a robot was equipped with a robotic skin of new sensory technologies that provide feedback according to the style of interaction and strength of the touch. This encourages certain tactile behaviours in children living with autism, helping them further develop their body awareness and sense of self.

Robots undertaking dangerous tasks

  • European Research is helping to develop robots which can replace humans in dangerous situations or carry out potentially lethal tasks. One example is HYFLAM, a dexterous robot hand for use in bacteriological or chemical laboratories. HYFLAM can perform a set of complex - and occasionally dangerous- manipulations operations, for example helping microbiologists carry out risky tests on their samples. Working with some of the deadliest microorganisms on the planet, this robot can carry out a highly-skilled job in laboratories where accidents can be catastrophic.

For further information, please visit:
Eurobarometer survey "Public attitudes towards Robots" and Country Sheets

Most Popular Now

Stepping Hill Hospital Announced as SPAR…

Stepping Hill Hospital, part of Stockport NHS Foundation Trust, has replaced its bedside units with state-of-the art devices running a full range of information, engagement, communications and productivity apps, to...

DMEA 2025: Digital Health Worldwide in B…

8 - 10 April 2025, Berlin, Germany. From the AI Act, to the potential of the European Health Data Space, to the power of patient data in Scandinavia - DMEA 2025...

Is AI in Medicine Playing Fair?

As artificial intelligence (AI) rapidly integrates into health care, a new study by researchers at the Icahn School of Medicine at Mount Sinai reveals that all generative AI models may...

New System for the Early Detection of Au…

A team from the Human-Tech Institute-Universitat Politècnica de València has developed a new system for the early detection of Autism Spectrum Disorder (ASD) using virtual reality and artificial intelligence. The...

Generative AI's Diagnostic Capabili…

The use of generative AI for diagnostics has attracted attention in the medical field and many research papers have been published on this topic. However, because the evaluation criteria were...

Diagnoses and Treatment Recommendations …

A new study led by Prof. Dan Zeltzer, a digital health expert from the Berglas School of Economics at Tel Aviv University, compared the quality of diagnostic and treatment recommendations...

AI Tool can Track Effectiveness of Multi…

A new artificial intelligence (AI) tool that can help interpret and assess how well treatments are working for patients with multiple sclerosis (MS) has been developed by UCL researchers. AI uses...

Surrey and Sussex Healthcare NHS Trust g…

Surrey and Sussex Healthcare NHS Trust has marked an important milestone in connecting busy radiologists across large parts of South East England, following the successful go live of Sectra's enterprise...

Dr Jason Broch Joins the Highland Market…

The Highland Marketing advisory board has welcomed a new member - Dr Jason Broch, a GP and director with a strong track record in the NHS and IT-enabled transformation. Dr Broch...

DMEA 2025 Ends with Record Attendance an…

8 - 10 April 2025, Berlin, Germany. DMEA 2025 came to a successful close with record attendance and an impressive program. 20,500 participants attended Europe's leading digital health event over the...

Multi-Resistance in Bacteria Predicted b…

An AI model trained on large amounts of genetic data can predict whether bacteria will become antibiotic-resistant. The new study shows that antibiotic resistance is more easily transmitted between genetically...

AI-Driven Smart Devices to Transform Hea…

AI-powered, internet-connected medical devices have the potential to revolutionise healthcare by enabling early disease detection, real-time patient monitoring, and personalised treatments, a new study suggests. They are already saving lives...