ALERT

Serious adverse effects resulting from the treatment with thalidomide prompted modern drug legislation more than 40 years ago. Post-marketing spontaneous reporting systems for suspected adverse drug reactions (ADRs) have been a cornerstone to detect safety signals in pharmacovigilance. It has become evident that adverse effects of drugs may be detected too late, when millions of persons have already been exposed.

In this project, an alternative approach for the detection of ADR signals will be developed. Rather than relying on the physician's capability and willingness to recognize and report suspected ADRs, the system will systematically calculate the occurrence of disease (potentially ADRs) during specific drug use based on data available in electronic patient records. In this project, electronic health records (EHRs) of over 30 million patients from several European countries will be available. In an environment where rapid signal detection is feasible, rapid signal assessment is equally important. To rapidly assess signals, a number of resources will be used to substantiate the signals: causal reasoning based on information in the EHRs, semantic mining of the biomedical literature, and computational analysis of biological and chemical information (drugs, targets, anti-targets, SNPs, pathways, etc.).

The overall objective of this project is the design, development and validation of a computerized system that exploits data from electronic healthcare records and biomedical databases for the early detection of adverse drug reactions. The ALERT system will generate signals using data and text mining, epidemiological and other computational techniques, and subsequently substantiate these signals in the light of current knowledge of biological mechanisms and in silico prediction capabilities. The system should be able to detect signals better and faster than spontaneous reporting systems and should allow for identification of subpopulations at higher risk for ADRs.

For further information, please visit:

Project co-ordinator:
ERASMUS UNIVERSITAIR MEDISCH CENTRUM ROTTERDAM

Partners:

  • SOCIETA SERVIZI TELEMATICI SRL
  • UNIVERSIDADE DE AVEIRO
  • THE UNIVERSITY OF NOTTINGHAM
  • PHARMO COOPERATIE UA
  • AARHUS UNIVERSITETSHOSPITAL, AARHUS SYGEHUS
  • UNIVERSIDADE DE SANTIAGO DE COMPOSTELA
  • UNIVERSITAT POMPEU FABRA
  • IRCCS CENTRO NEUROLESI BONINO PULEJO
  • FUNDACIO IMIM
  • LONDON SCHOOL OF HYGIENE AND TROPICAL MEDICINE
  • ASTRAZENECA AB
  • UNIVERSITE VICTOR SEGALEN BORDEAUX II
  • AGENZIA REGIONALE DI SANITA
  • UNIVERSITA DEGLI STUDI DI MILANO - BICOCCA

Timetable: from 02/2008 – to 07/2011

Total cost: € 5.880.600

EC funding: € 4.500.000

Programme Acronym: FP7-ICT

Subprogramme Area: Advanced ICT for risk assessment and patient safety

Contract type: Collaborative project (generic)

Related news article:

Most Popular Now

Unlocking the 10 Year Health Plan

The government's plan for the NHS is a huge document. Jane Stephenson, chief executive of SPARK TSL, argues the key to unlocking its digital ambitions is to consider what it...

Alcidion Grows Top Talent in the UK, wit…

Alcidion has today announced the addition of three new appointments to their UK-based team, with one internal promotion and two external recruits. Dr Paul Deffley has been announced as the...

AI can Find Cancer Pathologists Miss

Men assessed as healthy after a pathologist analyses their tissue sample may still have an early form of prostate cancer. Using AI, researchers at Uppsala University have been able to...

AI, Full Automation could Expand Artific…

Automated insulin delivery (AID) systems such as the UVA Health-developed artificial pancreas could help more type 1 diabetes patients if the devices become fully automated, according to a new review...

How AI could Speed the Development of RN…

Using artificial intelligence (AI), MIT researchers have come up with a new way to design nanoparticles that can more efficiently deliver RNA vaccines and other types of RNA therapies. After training...

MIT Researchers Use Generative AI to Des…

With help from artificial intelligence, MIT researchers have designed novel antibiotics that can combat two hard-to-treat infections: drug-resistant Neisseria gonorrhoeae and multi-drug-resistant Staphylococcus aureus (MRSA). Using generative AI algorithms, the research...

AI Hybrid Strategy Improves Mammogram In…

A hybrid reading strategy for screening mammography, developed by Dutch researchers and deployed retrospectively to more than 40,000 exams, reduced radiologist workload by 38% without changing recall or cancer detection...

Penn Developed AI Tools and Datasets Hel…

Doctors treating kidney disease have long depended on trial-and-error to find the best therapies for individual patients. Now, new artificial intelligence (AI) tools developed by researchers in the Perelman School...

New Training Year Starts at Siemens Heal…

In September, 197 school graduates will start their vocational training or dual studies in Germany at Siemens Healthineers. 117 apprentices and 80 dual students will begin their careers at Siemens...

Are You Eligible for a Clinical Trial? C…

A new study in the academic journal Machine Learning: Health discovers that ChatGPT can accelerate patient screening for clinical trials, showing promise in reducing delays and improving trial success rates. Researchers...

New AI Tool Addresses Accuracy and Fairn…

A team of researchers at the Icahn School of Medicine at Mount Sinai has developed a new method to identify and reduce biases in datasets used to train machine-learning algorithms...

Global Study Reveals How Patients View M…

How physicians feel about artificial intelligence (AI) in medicine has been studied many times. But what do patients think? A team led by researchers at the Technical University of Munich...