An App can Transform Smartphones into Thermometers that Accurately Detect Fevers

If you've ever thought you may be running a temperature yet couldn’t find a thermometer, you aren't alone. A fever is the most commonly cited symptom of COVID-19 and an early sign of many other viral infections. For quick diagnoses and to prevent viral spread, a temperature check can be crucial. Yet accurate at-home thermometers aren't commonplace, despite the rise of telehealth consultations.

There are a few potential reasons for that. The devices can range from $15 to $300, and many people need them only a few times a year. In times of sudden demand - such as the early days of the COVID-19 pandemic - thermometers can sell out. Many people, particularly those in under-resourced areas, can end up without a vital medical device when they need it most.

To address this issue, a team led by researchers at the University of Washington has created an app called FeverPhone, which transforms smartphones into thermometers without adding new hardware. Instead, it uses the phone's touchscreen and repurposes the existing battery temperature sensors to gather data that a machine learning model uses to estimate people’s core body temperatures. When the researchers tested FeverPhone on 37 patients in an emergency department, the app estimated core body temperatures with accuracy comparable to some consumer thermometers. The team published its findings March 28 in Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies.

"In undergrad, I was doing research in a lab where we wanted to show that you could use the temperature sensor in a smartphone to measure air temperature," said lead author Joseph Breda, a UW doctoral student in the Paul G. Allen School of Computer Science & Engineering. "When I came to the UW, my adviser and I wondered how we could apply a similar technique for health. We decided to measure fever in an accessible way. The primary concern with temperature isn’t that it’s a difficult signal to measure; it’s just that people don’t have thermometers."

The app is the first to use existing phone sensors and screens to estimate whether people have fevers. It needs more training data to be widely used, Breda said, but for doctors, the potential of such technology is exciting.

"People come to the ER all the time saying, 'I think I was running a fever.' And that’s very different than saying 'I was running a fever,'" said Dr. Mastafa Springston, a co-author on the study and a UW clinical instructor at the Department of Emergency Medicine in the UW School of Medicine. "In a wave of influenza, for instance, people running to the ER can take five days, or even a week sometimes. So if people were to share fever results with public health agencies through the app, similar to how we signed up for COVID exposure warnings, this earlier sign could help us intervene much sooner."

Clinical-grade thermometers use tiny sensors known as thermistors to estimate body temperature. Off-the-shelf smartphones also happen to contain thermistors; they’re mostly used to monitor the temperature of the battery. But the UW researchers realized they could use these sensors to track heat transfer between a person and a phone. The phone touchscreen could sense skin-to-phone contact, and the thermistors could gauge the air temperature and the rise in heat when the phone touched a body.

To test this idea, the team started by gathering data in a lab. To simulate a warm forehead, the researchers heated a plastic bag of water with a sous-vide machine and pressed phone screens against the bag. To account for variations in circumstances, such as different people using different phones, the researchers tested three phone models. They also added accessories such as a screen protector and a case and changed the pressure on the phone.

The researchers used the data from different test cases to train a machine learning model that used the complex interactions to estimate body temperature. Since the sensors are supposed to gauge the phone’s battery heat, the app tracks how quickly the phone heats up and then uses the touchscreen data to account for how much of that comes from a person touching it. As they added more test cases, the researchers were able to calibrate the model to account for the variations in things such as phone accessories.

Then the team was ready to test the app on people. The researchers took FeverPhone to the UW School of Medicine's Emergency Department for a clinical trial where they compared its temperature estimates against an oral thermometer reading. They recruited 37 participants, 16 of whom had at least a mild fever.

To use FeverPhone, the participants held the phones like point-and-shoot cameras - with forefingers and thumbs touching the corner edges to reduce heat from the hands being sensed (some had the researcher hold the phone for them). Then participants pressed the touchscreen against their foreheads for about 90 seconds, which the researchers found to be the ideal time to sense body heat transferring to the phone.

Overall, FeverPhone estimated patient core body temperatures with an average error of about 0.41 degrees Fahrenheit (0.23 degrees Celsius), which is in the clinically acceptable range of 0.5 C.

The researchers have highlighted a few areas for further investigation. The study didn’t include participants with severe fevers above 101.5 F (38.6 C), because these temperatures are easy to diagnose and because sweaty skin tends to confound other skin-contact thermometers, according to the team. Also, FeverPhone was tested on only three phone models. Training it to run on other smartphones, as well as devices such as smartwatches, would increase its potential for public health applications, the teamsaid.

"We started with smartphones since they’re ubiquitous and easy to get data from,” Breda said. “I am already working on seeing if we can get a similar signal with a smartwatch. What’s nice, because watches are much smaller, is their temperature will change more quickly. So you could imagine having a user put a Fitbit to their forehead and measure in 10 seconds whether they have a fever or not."

Joseph Breda, Mastafa Springston, Alex Mariakakis, Shwetak Patel.
FeverPhone: Accessible Core-Body Temperature Sensing for Fever Monitoring Using Commodity Smartphones.
Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2023. doi: 10.1145/3580850

Most Popular Now

ChatGPT can Produce Medical Record Notes…

The AI model ChatGPT can write administrative medical notes up to ten times faster than doctors without compromising quality. This is according to a new study conducted by researchers at...

Can Language Models Read the Genome? Thi…

The same class of artificial intelligence that made headlines coding software and passing the bar exam has learned to read a different kind of text - the genetic code. That code...

Bayer and Google Cloud to Accelerate Dev…

Bayer and Google Cloud announced a collaboration on the development of artificial intelligence (AI) solutions to support radiologists and ultimately better serve patients. As part of the collaboration, Bayer will...

Study Shows Human Medical Professionals …

When looking for medical information, people can use web search engines or large language models (LLMs) like ChatGPT-4 or Google Bard. However, these artificial intelligence (AI) tools have their limitations...

Shared Digital NHS Prescribing Record co…

Implementing a single shared digital prescribing record across the NHS in England could avoid nearly 1 million drug errors every year, stopping up to 16,000 fewer patients from being harmed...

Ask Chat GPT about Your Radiation Oncolo…

Cancer patients about to undergo radiation oncology treatment have lots of questions. Could ChatGPT be the best way to get answers? A new Northwestern Medicine study tested a specially designed ChatGPT...

North West Anglia Works with Clinisys to…

North West Anglia NHS Foundation Trust has replaced two, legacy laboratory information systems with a single instance of Clinisys WinPath. The trust, which serves a catchment of 800,000 patients in North...

Can AI Techniques Help Clinicians Assess…

Investigators have applied artificial intelligence (AI) techniques to gait analyses and medical records data to provide insights about individuals with leg fractures and aspects of their recovery. The study, published in...

AI Makes Retinal Imaging 100 Times Faste…

Researchers at the National Institutes of Health applied artificial intelligence (AI) to a technique that produces high-resolution images of cells in the eye. They report that with AI, imaging is...

SPARK TSL Acquires Sentean Group

SPARK TSL is acquiring Sentean Group, a Dutch company with a complementary background in hospital entertainment and communication, and bringing its Fusion Bedside platform for clinical and patient apps to...

Standing Up for Health Tech and SMEs: Sh…

AS the new chair of the health and social care council at techUK, Shane Tickell talked to Highland Marketing about his determination to support small and innovative companies, by having...

GPT-4 Matches Radiologists in Detecting …

Large language model GPT-4 matched the performance of radiologists in detecting errors in radiology reports, according to research published in Radiology, a journal of the Radiological Society of North America...