Comment RIDE Project Deliverables

RIDE is a roadmap project for interoperability of eHealth systems leading to recommendations for actions and to preparatory actions at the European level. This roadmap will prepare the ground for future actions as envisioned in the action plan of the eHealth Communication COM 356 by coordinating various efforts on eHealth interoperability in member states and the associated states. Since it is not realistic to expect to have a single universally accepted clinical data model that will be adhered to all over the Europe and that the clinical practice, terminology systems and EHR systems are all a long way from such a complete harmonization; the RIDE project address the interoperability of eHealth systems with special emphasis on semantic interoperability.

RIDE Project Partners are:
1. Middle East Technical University, Software Research and Development Center METU, SRDC, Turkey
2. OFFIS e.V., Healthcare Information and Communication Systems (OFFIS), Germany
3. Institute for Formal Ontology and Medical Information Science (IFOMIS), Germany
4. European Institute for Health Records (EuroRec), France
5. National Council of Research, Institute for Biomedical Technology (CNR), Italy
6. National Technical University of Athens, Institute of Communication and Computer Systems (NTUA, ICSS), Greece
7. National University of Ireland, Digital Enterprise Research Institute (NUIG, DERI), Ireland
8. IHE-D e.V., Integrating the Healthcare Enterprise - Deutschland (IHE-D), Germany
9. OLE, Office Line Engineering NV (OLE), Belgium

RIDE Project launched a novel dissemination approach; eHealth professionals are very welcome to share their comments regarding the published RIDE Project deliverables. You can see the [send comment] button on the left side of all public deliverables on page http://www.srdc.metu.edu.tr/webpage/projects/ride/modules.php?name=Deliverables. When you press the [send comment] button, a pop-up window appears in which the commentator can both send text comments or upload commented documents.

Coordinator contact details:
Prof. Dr. Asuman Dogac
Department of Computer Engineering
Director of Software Research & Development Center
Middle East Technical University
06531, Ankara, Turkey
http://www.srdc.metu.edu.tr/~asuman
Phone: +90 - 312 - 210 5598 or +90 - 312 - 210 2076
Fax: +90 - 312- 210 5572 or +90 - 312 - 210 1259

Related news article:

Most Popular Now

Integrating Care Records is Good. Using …

Opinion Article by Dr Paul Deffley, Chief Medical Officer, Alcidion. A single patient record already exists in the NHS. Or at least, that’s a perception shared by many. A survey of...

Should AI Chatbots Replace Your Therapis…

The new study exposes the dangerous flaws in using artificial intelligence (AI) chatbots for mental health support. For the first time, the researchers evaluated these AI systems against clinical standards...

AI could Help Pathologists Match Cancer …

A new study by researchers at the Icahn School of Medicine at Mount Sinai, Memorial Sloan Kettering Cancer Center, and collaborators, suggests that artificial intelligence (AI) could significantly improve how...

AI Detects Early Signs of Osteoporosis f…

Investigators have developed an artificial intelligence-assisted diagnostic system that can estimate bone mineral density in both the lumbar spine and the femur of the upper leg, based on X-ray images...

AI Model Converts Hospital Records into …

UCLA researchers have developed an AI system that turns fragmented electronic health records (EHR) normally in tables into readable narratives, allowing artificial intelligence to make sense of complex patient histories...

AI Sharpens Pathologists' Interpret…

Pathologists' examinations of tissue samples from skin cancer tumours improved when they were assisted by an AI tool. The assessments became more consistent and patients' prognoses were described more accurately...

AI Tool Detects Surgical Site Infections…

A team of Mayo Clinic researchers has developed an artificial intelligence (AI) system that can detect surgical site infections (SSIs) with high accuracy from patient-submitted postoperative wound photos, potentially transforming...

Forging a Novel Therapeutic Path for Pat…

Rett syndrome is a devastating rare genetic childhood disorder primarily affecting girls. Merely 1 out of 10,000 girls are born with it and much fewer boys. It is caused by...

Mayo Clinic's AI Tool Identifies 9 …

Mayo Clinic researchers have developed a new artificial intelligence (AI) tool that helps clinicians identify brain activity patterns linked to nine types of dementia, including Alzheimer's disease, using a single...

AI Detects Fatty Liver Disease with Ches…

Fatty liver disease, caused by the accumulation of fat in the liver, is estimated to affect one in four people worldwide. If left untreated, it can lead to serious complications...

AI Matches Doctors in Mapping Lung Tumor…

In radiation therapy, precision can save lives. Oncologists must carefully map the size and location of a tumor before delivering high-dose radiation to destroy cancer cells while sparing healthy tissue...

Meet Your Digital Twin

Before an important meeting or when a big decision needs to be made, we often mentally run through various scenarios before settling on the best course of action. But when...