Reinforcement Learning for Improved Performance of AI Explored

Artificial intelligence (AI) is already being used to diagnose skin cancer, but it cannot (yet) keep pace with the complex decision-making of doctors in practice. An international research team led by Harald Kittler of MedUni Vienna has now explored a learning method in which greater accuracy in AI results can be achieved by incorporating human decision-making criteria. In this way, the rate of correct skin cancer diagnoses made by dermatologists was improved by twelve percent. The study was published in the top journal Nature Medicine.

The researchers based their study on the reinforcement learning (RL) model and integrated (human) criteria in the form of "reward tables" into the AI system. Reward tables are tools that incorporate the positive and negative consequences of clinical assessments into the decision-making process from both the physician's and the patient's perspective. On this basis, AI diagnosis results were not only rated as right or wrong, but were "rewarded" or "penalized" with a certain number of plus or minus points depending on the impact of the diagnosis or the resulting decisions.

"In this way, the AI learned to take into account not only image-based features, but also consequences of misdiagnosis in the assessment of benign and malignant skin manifestations," clarifies study leader Harald Kittler from the Department of Dermatology at MedUni Vienna. As a result, as the study shows, the accuracy of the diagnosis of skin cancer could be significantly improved: The sensitivity for melanoma, for example, was increased from 61.4 to 79.5 percent and for basal cell carcinoma from 79.4 to 87.1 percent. Overall, the use of RL increased the rate of correct diagnoses made by dermatologists by 12 percent, while the rate of optimal decisions for management and therapy of the disease increased from 57.4 to 65.3 percent.

Such improved performance of AI-based skin cancer diagnosis is also because RL reduces the AI's overconfidence in its own predictions and makes more nuanced and human-compatible suggestions. "This, in turn, helps physicians make more accurate decisions tailored to individual patients in complex medical scenarios," Harald Kittler emphasized ahead of further research on the topic. Although the current work focused mainly on skin cancer diagnosis, the basic ideas could also be used in other areas of medical decision-making.

Barata C, Rotemberg V, Codella NCF, Tschandl P, Rinner C, Akay BN, Apalla Z, Argenziano G, Halpern A, Lallas A, Longo C, Malvehy J, Puig S, Rosendahl C, Soyer HP, Zalaudek I, Kittler H.
A reinforcement learning model for AI-based decision support in skin cancer.
Nat Med. 2023 Jul 27. doi: 10.1038/s41591-023-02475-5

Most Popular Now

Unlocking the 10 Year Health Plan

The government's plan for the NHS is a huge document. Jane Stephenson, chief executive of SPARK TSL, argues the key to unlocking its digital ambitions is to consider what it...

Alcidion Grows Top Talent in the UK, wit…

Alcidion has today announced the addition of three new appointments to their UK-based team, with one internal promotion and two external recruits. Dr Paul Deffley has been announced as the...

AI can Find Cancer Pathologists Miss

Men assessed as healthy after a pathologist analyses their tissue sample may still have an early form of prostate cancer. Using AI, researchers at Uppsala University have been able to...

New Training Year Starts at Siemens Heal…

In September, 197 school graduates will start their vocational training or dual studies in Germany at Siemens Healthineers. 117 apprentices and 80 dual students will begin their careers at Siemens...

AI, Full Automation could Expand Artific…

Automated insulin delivery (AID) systems such as the UVA Health-developed artificial pancreas could help more type 1 diabetes patients if the devices become fully automated, according to a new review...

How AI could Speed the Development of RN…

Using artificial intelligence (AI), MIT researchers have come up with a new way to design nanoparticles that can more efficiently deliver RNA vaccines and other types of RNA therapies. After training...

MIT Researchers Use Generative AI to Des…

With help from artificial intelligence, MIT researchers have designed novel antibiotics that can combat two hard-to-treat infections: drug-resistant Neisseria gonorrhoeae and multi-drug-resistant Staphylococcus aureus (MRSA). Using generative AI algorithms, the research...

AI Hybrid Strategy Improves Mammogram In…

A hybrid reading strategy for screening mammography, developed by Dutch researchers and deployed retrospectively to more than 40,000 exams, reduced radiologist workload by 38% without changing recall or cancer detection...

Penn Developed AI Tools and Datasets Hel…

Doctors treating kidney disease have long depended on trial-and-error to find the best therapies for individual patients. Now, new artificial intelligence (AI) tools developed by researchers in the Perelman School...

Are You Eligible for a Clinical Trial? C…

A new study in the academic journal Machine Learning: Health discovers that ChatGPT can accelerate patient screening for clinical trials, showing promise in reducing delays and improving trial success rates. Researchers...

Global Study Reveals How Patients View M…

How physicians feel about artificial intelligence (AI) in medicine has been studied many times. But what do patients think? A team led by researchers at the Technical University of Munich...

New AI Tool Addresses Accuracy and Fairn…

A team of researchers at the Icahn School of Medicine at Mount Sinai has developed a new method to identify and reduce biases in datasets used to train machine-learning algorithms...