Using AI to Analyze Large Amounts of Biological Data

Researchers at the University of Missouri are applying a form of artificial intelligence (AI) - previously used to analyze how National Basketball Association (NBA) players move their bodies - to now help scientists develop new drug therapies for medical treatments targeting cancers and other diseases.

The type of AI, called a graph neural network, can help scientists with speeding up the time it takes to sift through large amounts of data generated by studying protein dynamics. This approach can provide new ways to identify target sites on proteins for drugs to work effectively, said Dong Xu, a Curators' Distinguished Professor in the Department of Electrical Engineering and Computer Science at the MU College of Engineering and one of the study's authors.

"Previously, drug designers may have known about a couple places on a protein’s structure to target with their therapies," said Xu, who is also the Paul K. and Dianne Shumaker Professor in bioinformatics. "A novel outcome of this method is that we identified a pathway between different areas of the protein structure, which could potentially allow scientists who are designing drugs to see additional possible target sites for delivering their targeted therapies. This can increase the chances that the therapy may be successful."

Xu said they can also simulate how proteins can change in relation to different conditions, such as the development of cancer, and then use that information to infer their relationships with other bodily functions.

"With machine learning we can really study what are the important interactions within different areas of the protein structure," Xu said. "Our method provides a systematic review of the data involved when studying proteins, as well as a protein’s energy state, which could help when identifying any possible mutation’s effect. This is important because protein mutations can enhance the possibility of cancers and other diseases developing in the body."

Zhu J, Wang J, Han W, Xu D.
Neural relational inference to learn long-range allosteric interactions in proteins from molecular dynamics simulations.
Nat Commun. 2022 Mar 29;13(1):1661. doi: 10.1038/s41467-022-29331-3

Most Popular Now

The Future of Medicine is Data

At the 2023 Annual J.P. Morgan Healthcare Conference, Owkin Co-founder and CEO Thomas Clozel, MD will outline how data is the future of medicine - from the development of new...

Study Surveys Landscape of Apps Built on…

A study led by Regenstrief Institute Research Scientist Titus K. Schleyer, DMD, PhD, is among the first to survey the current landscape of FHIR® apps, providing a snapshot of how...

New Computer Program 'Learns' to Identif…

Genetic mutations cause hundreds of unsolved and untreatable disorders. Among them, DNA mutations in a small percentage of cells, called mosaic mutations, are extremely difficult to detect because they exist...

Applications Open for SpinLab Accelerato…

The start-up accelerator supports entrepreneurial and innovative teams that want to grow sustainably and successfully scale their business model. With a strong hands-on mentality and a lot of passion, the...

Bayer to Accelerate Drug Discovery with …

Bayer AG and Google Cloud today announced a collaboration to drive early drug discovery that will apply Google Cloud's Tensor Processing Units (TPUs), which are custom-developed accelerators designed to run...

Allscripts Announces Corporate Name Chan…

Allscripts Healthcare Solutions, Inc. announced that, effective January 1, 2023, it has changed its name to Veradigm Inc. (NASDAQ: MDRX). Allscripts had been transitioning its solutions to the Veradigm brand...

220M€ Investment in Testing and Experime…

To make the EU the place where AI excellence thrives from the lab to the market, the European Union is setting up world-class Testing and Experimentation Facilities (TEFs) for AI. Together...

AI Tool Developed to Predict Risk of Lun…

Lung cancer is the leading cause of cancer death in the United States and around the world. Low-dose chest computed tomography (LDCT) is recommended to screen people between 50 and...

Artificial Nerve Cells - Almost Like Bio…

Researchers at Linköping University (LiU), Sweden, have created an artificial organic neuron that closely mimics the characteristics of biological nerve cells. This artificial neuron can stimulate natural nerves, making it...

Bayer Acquires Blackford Analysis Ltd. B…

Bayer announced the acquisition of the global strategic imaging AI platform and solutions provider Blackford Analysis Ltd. The acquisition is part of Bayer's strategy to drive innovation in radiology, including...

For Shared Decision-Making, Telemedicine…

Telemedicine may be just as effective as in-person visits when it comes to shared decision-making and communication for patients undergoing a first-time surgery consultation, according to a study published as...

Veradigm Announces Strategic Investment …

Veradigm Inc. (NASDAQ: MDRX), formerly Allscripts Healthcare Solutions, Inc., announced an investment in Holmusk, a global behavioral health real-world evidence and data analytics company, as part of Holmusk's $45 million...