Webinar: Assessing Clinical and Economic Benefits of Biocomputational Models

27 March 2012, 09:00 PDST/13:00 EST/18:00 CEST (UTC +02:00).
The economic assessment method described reflects the latest research from the NMS Physiome project, a cooperation of two of the largest global research projects focusing on predictive, personalised and integrative musculoskeletal medicine: the Osteoporotic Virtual Physiological Human (VPHOP) project, and the Center for Physics-based Simulation of Biological Structures (SIMBIOS) at Stanford University.

The Virtual Physiological Human (VPH) is a framework of methods and technologies that, once fully established, is expected to make possible the virtual investigation of the human body as a whole. Started in Europe in 2005, it has rapidly grown to become one of the research priorities of the Information and Communication Technologies Programme of the EU Seventh Framework Programme for Research and Technological Development, which runs from 2007 to 2013. In the US, VPH-type research is funded by all the federal agencies that participate in the Interagency Modeling and Analysis Group (IMAG), whose grantees are coordinated in the Multi-Scale Modeling (MSM) consortium.

NMS Physiome is an international project co-funded by the European Commission Seventh Framework Programme for Research and Technological Development. The Webinar is hosted by SIMBIOS, Stanford University.

How do you assess the impact of biocomputational models?
Karl Stroetmann and Rainer Thiel, empirica Communication and Technology Research, Bonn, Germany.

In this webinar, you will learn about general principles to evaluate the prospective economic and clinical benefits of simulation methods. Webinar organisers will show how this approach enables you to:

  • Assess simulation research and translate technical capability into quantitative estimates of costs and benefits that go beyond model validation
  • Gain a better understanding about the impact such work can have on future health care service delivery and clinical practice
  • Demonstrate the added value of simulation research through clear measures of clinical benefits and the development of business cases
  • More effectively decide what aspects of the model should be included or excluded

The webinar is targeted at biocomputational modellers and researchers as well as RTD funding agencies in the field of Virtual Physiological Human and Physiome.

Duration: 60 minutes.

To register for the event, please visit:
https://stanford.webex.com/stanford/onstage/g.php?d=925320571&t=a

Most Popular Now

AI Catches One-Third of Interval Breast …

An AI algorithm for breast cancer screening has potential to enhance the performance of digital breast tomosynthesis (DBT), reducing interval cancers by up to one-third, according to a study published...

NHS National Rehabilitation Centre to De…

The new NHS National Rehabilitation Centre will deploy technology to help patients to maintain their independence as they recover from life-changing injuries and illnesses and regain quality of life. Airwave Healthcare...

AI Finds Hundreds of Potential Antibioti…

Snake, scorpion, and spider venom are most frequently associated with poisonous bites, but with the help of artificial intelligence, they might be able to help fight antibiotic resistance, which contributes...

AI Tool Accurately Detects Tumor Locatio…

An AI model trained to detect abnormalities on breast MR images accurately depicted tumor locations and outperformed benchmark models when tested in three different groups, according to a study published...

AI can Accelerate Search for More Effect…

Scientists have used an AI model to reassess the results of a completed clinical trial for an Alzheimer’s disease drug. They found the drug slowed cognitive decline by 46% in...

AI Accurately Classifies Pancreatic Cyst…

Artificial intelligence (AI) models such as ChatGPT are designed to rapidly process data. Using the AI ChatGPT-4 platform to extract and analyze specific data points from the Magnetic Resonance Imaging...

Free AI Tools can Help Doctors Read Medi…

A new study from the University of Colorado Anschutz Medical Campus shows that free, open-source artificial intelligence (AI) tools can help doctors report medical scans just as well as more...

Great plan: Now We need to Get Real abou…

The government's big plan for the 10 Year Health Plan for the NHS laid out a big role for delivery. However, the Highland Marketing advisory board felt the missing implementation...

Autonomous AI Agents in Healthcare

The use of large language models (LLMs) and other forms of generative AI (GenAI) in healthcare has surged in recent years, and many of these technologies are already applied in...

Can Amazon Alexa or Google Home Help Det…

Computer scientists at the University of Rochester have developed an AI-powered, speech-based screening tool that can help people assess whether they are showing signs of Parkinson’s disease, the fastest growing...

Researchers Create 'Virtual Scienti…

There may be a new artificial intelligence-driven tool to turbocharge scientific discovery: virtual labs. Modeled after a well-established Stanford School of Medicine research group, the virtual lab is complete with an...

From WebMD to AI Chatbots: How Innovatio…

A new research article published in the Journal of Participatory Medicine unveils how successive waves of digital technology innovation have empowered patients, fostering a more collaborative and responsive health care...