New Tool can Diagnose Strokes with a Smartphone

A new tool created by researchers at Penn State and Houston Methodist Hospital could diagnose a stroke based on abnormalities in a patient's speech ability and facial muscular movements, and with the accuracy of an emergency room physician - all within minutes from an interaction with a smartphone.

"When a patient experiences symptoms of a stroke, every minute counts," said James Wang, professor of information sciences and technology at Penn State. "But when it comes to diagnosing a stroke, emergency room physicians have limited options: send the patient for often expensive and time-consuming radioactivity-based scans or call a neurologist - a specialist who may not be immediately available - to perform clinical diagnostic tests."

Wang and his colleagues have developed a machine learning model to aid in, and potentially speed up, the diagnostic process by physicians in a clinical setting.

"Currently, physicians have to use their past training and experience to determine at what stage a patient should be sent for a CT scan," said Wang. "We are trying to simulate or emulate this process by using our machine learning approach."

The team's novel approach is the first to analyze the presence of stroke among actual emergency room patients with suspicion of stroke by using computational facial motion analysis and natural language processing to identify abnormalities in a patient's face or voice, such as a drooping cheek or slurred speech.

The results could help emergency room physicians to more quickly determine critical next steps for the patient. Ultimately, the application could be utilized by caregivers or patients to make self-assessments before reaching the hospital.

"This is one of the first works that is enabling AI to help with stroke diagnosis in emergency settings," added Sharon Huang, associate professor of information sciences and technology at Penn State.

To train the computer model, the researchers built a dataset from more than 80 patients experiencing stroke symptoms at Houston Methodist Hospital in Texas. Each patient was asked to perform a speech test to analyze their speech and cognitive communication while being recorded on an Apple iPhone.

"The acquisition of facial data in natural settings makes our work robust and useful for real-world clinical use, and ultimately empowers our method for remote diagnosis of stroke and self-assessment," said Huang.

Testing the model on the Houston Methodist dataset, the researchers found that its performance achieved 79% accuracy - comparable to clinical diagnostics by emergency room doctors, who use additional tests such as CT scans. However, the model could help save valuable time in diagnosing a stroke, with the ability to assess a patient in as little as four minutes.

"There are millions of neurons dying every minute during a stroke," said John Volpi, a vascular neurologist and co-director of the Eddy Scurlock Stroke Center at Houston Methodist Hospital. "In severe strokes it is obvious to our providers from the moment the patient enters the emergency department, but studies suggest that in the majority of strokes, which have mild to moderate symptoms, that a diagnosis can be delayed by hours and by then a patient may not be eligible for the best possible treatments."

"The earlier you can identify a stroke, the better options (we have) for the patients," added Stephen T.C. Wong, John S. Dunn, Sr. Presidential Distinguished Chair in Biomedical Engineering at the Ting Tsung and Wei Fong Chao Center for BRAIN and Houston Methodist Cancer Center. "That's what makes an early diagnosis essential."

Volpi said that physicians currently use a binary approach toward diagnosing strokes: They either suspect a stroke, sending the patient for a series of scans that could involve radiation; or they do not suspect a stroke, potentially overlooking patients who may need further assessment.

"What we think in that triage moment is being either biased toward overutilization (of scans, which have risks and benefits) or underdiagnosis," said Volpi, a co-author on the paper. "If we can improve diagnostics at the front end, then we can better expose the right patients to the right risks and not miss patients who would potentially benefit."

He added, "We have great therapeutics, medicines and procedures for strokes, but we have very primitive and, frankly, inaccurate diagnostics."

Other collaborators on the project include Tongan Cai and Mingli Yu, graduate students working with Wang and Huang at Penn State; and Kelvin Wong, associate research professor of electronic engineering in oncology at Houston Methodist Hospital.

The team presented their paper, "Toward Rapid Stroke Diagnosis with Multimodal Deep Learning," at the virtual 23rd International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI).

Penn State has also filed a provisional patent application jointly with Houston Methodist on the computer model.

Most Popular Now

Researchers Invent AI Model to Design Ne…

Researchers at McMaster University and Stanford University have invented a new generative artificial intelligence (AI) model which can design billions of new antibiotic molecules that are inexpensive and easy to...

Two Artificial Intelligences Talk to Eac…

Performing a new task based solely on verbal or written instructions, and then describing it to others so that they can reproduce it, is a cornerstone of human communication that...

Powerful New AI can Predict People'…

A powerful new tool in artificial intelligence is able to predict whether someone is willing to be vaccinated against COVID-19. The predictive system uses a small set of data from demographics...

AI-Based App can Help Physicians Find Sk…

A mobile app that uses artificial intelligence, AI, to analyse images of suspected skin lesions can diagnose melanoma with very high precision. This is shown in a study led from...

Greater Manchester Reaches New Milestone…

Radiologists and radiographers at Northern Care Alliance NHS Foundation Trust have become the first in Greater Manchester to use the Sectra picture archiving and communication system (PACS) to report on...

Alcidion and Novari Health Forge Strateg…

Alcidion Group Limited, a leading provider of FHIR-native patient flow solutions for healthcare, and Novari Health, a market leader in waitlist management and referral management technologies, have joined forces to...

Researchers Develop Deep Learning Model …

Researchers have developed a new, interpretable artificial intelligence (AI) model to predict 5-year breast cancer risk from mammograms, according to a new study published today in Radiology, a journal of...

ChatGPT can Produce Medical Record Notes…

The AI model ChatGPT can write administrative medical notes up to ten times faster than doctors without compromising quality. This is according to a new study conducted by researchers at...

Can Language Models Read the Genome? Thi…

The same class of artificial intelligence that made headlines coding software and passing the bar exam has learned to read a different kind of text - the genetic code. That code...

Advancing Drug Discovery with AI: Introd…

A transformative study published in Health Data Science, a Science Partner Journal, introduces a groundbreaking end-to-end deep learning framework, known as Knowledge-Empowered Drug Discovery (KEDD), aimed at revolutionizing the field...

Wanted: Young Talents. DMEA Sparks Bring…

9 - 11 April 2024, Berlin, Germany. The digital health industry urgently needs skilled workers, which is why DMEA sparks focuses on careers, jobs and supporting young people. Against the backdrop of...

Study Shows Human Medical Professionals …

When looking for medical information, people can use web search engines or large language models (LLMs) like ChatGPT-4 or Google Bard. However, these artificial intelligence (AI) tools have their limitations...